Advances and Future Perspectives in 4D Bioprinting

被引:171
作者
Ashammakhi, Nureddin [1 ,2 ,3 ]
Ahadian, Samad [1 ,2 ]
Fan Zengjie [1 ,2 ,4 ]
Suthiwanich, Kasinan [1 ,2 ,5 ]
Lorestani, Farnaz [1 ,2 ,6 ,7 ]
Orive, Gorka [8 ,9 ,10 ]
Ostrovidov, Serge [1 ,2 ]
Khademhosseini, Ali [1 ,2 ,11 ,12 ,13 ,14 ]
机构
[1] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Oulu Univ, Dept Surg, Div Plast Surg, Oulu 8000, Finland
[4] Lanzhou Univ, Sch Stomatol, Lanzhou 730000, Gansu, Peoples R China
[5] Tokyo Inst Technol, Dept Mat Sci & Engn, Sch Mat & Chem Technol, Tokyo 1528550, Japan
[6] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia
[7] Univ Malaya, Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[8] Univ Basque Country, UPV EHU, Fac Pharm, Vitoria 48940, Spain
[9] CIBER BBN, Networking Biomed Res Ctr Bioengn Biomat & Nanome, Vitoria 28029, Spain
[10] Univ Basque Country, Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria 48940, Spain
[11] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[13] King Abdulaziz Univ, Ctr Nanotechnol, Dept Phys, Jeddah 21589, Saudi Arabia
[14] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul 05029, South Korea
基金
美国国家卫生研究院;
关键词
4D bioprinting; additive manufacturing; bioinks; stimuli-responsive biomaterials; tissue engineering; DRUG-DELIVERY; ELECTRICAL-STIMULATION; CARBON NANOTUBES; ON-DEMAND; HYDROGELS; GRAPHENE; POLYMER; CELLS; PH; DIFFERENTIATION;
D O I
10.1002/biot.201800148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.
引用
收藏
页数:12
相关论文
共 116 条
  • [31] Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues
    Freeman, Fiona E.
    Kelly, Daniel J.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [32] Microstructures of conducting polymers: Patterning and actuation study
    Gaihre, Babita
    Weng, Bo
    Ashraf, Syed
    Spinks, Geoffrey M.
    Innis, Peter C.
    Wallace, Gordon G.
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2013, 197 : 106 - 110
  • [33] 4D Bioprinting for Biomedical Applications
    Gao, Bin
    Yang, Qingzhen
    Zhao, Xin
    Jin, Guorui
    Ma, Yufei
    Xu, Feng
    [J]. TRENDS IN BIOTECHNOLOGY, 2016, 34 (09) : 746 - 756
  • [34] Multimaterial 4D Printing with Tailorable Shape Memory Polymers
    Ge, Qi
    Sakhaei, Amir Hosein
    Lee, Howon
    Dunn, Conner K.
    Fang, Nicholas X.
    Dunn, Martin L.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [35] Gladman AS, 2016, NAT MATER, V15, P413, DOI [10.1038/nmat4544, 10.1038/NMAT4544]
  • [36] Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography
    Gomez, Laura Piedad Chia
    Spangenberg, Arnaud
    Ton, Xuan-Anh
    Fuchs, Yannick
    Bokeloh, Frank
    Malval, Jean-Pierre
    Bui, Bernadette Tse Sum
    Thuau, Damien
    Ayela, Cedric
    Haupt, Karsten
    Soppera, Olivier
    [J]. ADVANCED MATERIALS, 2016, 28 (28) : 5931 - +
  • [37] Conducting polymer-hydrogels for medical electrode applications
    Green, Rylie A.
    Baek, Sungchul
    Poole-Warren, Laura A.
    Martens, Penny J.
    [J]. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2010, 11 (01)
  • [38] Photodegradable Macromers and Hydrogels for Live Cell Encapsulation and Release
    Griffin, Donald R.
    Kasko, Andrea M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (31) : 13103 - 13107
  • [39] Development of hydrogels for regenerative engineering
    Guan, Xiaofei
    Avci-Adali, Meltem
    Alarcin, Emine
    Cheng, Hao
    Kashaf, Sara Saheb
    Li, Yuxiao
    Chawla, Aditya
    Jang, Hae Lin
    Khademhosseini, Ali
    [J]. BIOTECHNOLOGY JOURNAL, 2017, 12 (05)
  • [40] Han D., 2018, SCI FOR REP, V8, P1