Advances and Future Perspectives in 4D Bioprinting

被引:176
作者
Ashammakhi, Nureddin [1 ,2 ,3 ]
Ahadian, Samad [1 ,2 ]
Fan Zengjie [1 ,2 ,4 ]
Suthiwanich, Kasinan [1 ,2 ,5 ]
Lorestani, Farnaz [1 ,2 ,6 ,7 ]
Orive, Gorka [8 ,9 ,10 ]
Ostrovidov, Serge [1 ,2 ]
Khademhosseini, Ali [1 ,2 ,11 ,12 ,13 ,14 ]
机构
[1] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Oulu Univ, Dept Surg, Div Plast Surg, Oulu 8000, Finland
[4] Lanzhou Univ, Sch Stomatol, Lanzhou 730000, Gansu, Peoples R China
[5] Tokyo Inst Technol, Dept Mat Sci & Engn, Sch Mat & Chem Technol, Tokyo 1528550, Japan
[6] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia
[7] Univ Malaya, Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[8] Univ Basque Country, UPV EHU, Fac Pharm, Vitoria 48940, Spain
[9] CIBER BBN, Networking Biomed Res Ctr Bioengn Biomat & Nanome, Vitoria 28029, Spain
[10] Univ Basque Country, Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria 48940, Spain
[11] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[13] King Abdulaziz Univ, Ctr Nanotechnol, Dept Phys, Jeddah 21589, Saudi Arabia
[14] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul 05029, South Korea
基金
美国国家卫生研究院;
关键词
4D bioprinting; additive manufacturing; bioinks; stimuli-responsive biomaterials; tissue engineering; DRUG-DELIVERY; ELECTRICAL-STIMULATION; CARBON NANOTUBES; ON-DEMAND; HYDROGELS; GRAPHENE; POLYMER; CELLS; PH; DIFFERENTIATION;
D O I
10.1002/biot.201800148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.
引用
收藏
页数:12
相关论文
共 116 条
[1]   Smart scaffolds in tissue regeneration [J].
Ahadian, Samad ;
Khademhosseini, Ali .
REGENERATIVE BIOMATERIALS, 2018, 5 (03) :125-128
[2]   Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies [J].
Ahadian, Samad ;
Civitarese, Robert ;
Bannerman, Dawn ;
Mohammadi, Mohammad Hossein ;
Lu, Rick ;
Wang, Erika ;
Davenport-Huyer, Locke ;
Lai, Ben ;
Zhang, Boyang ;
Zhao, Yimu ;
Mandla, Serena ;
Korolj, Anastasia ;
Radisic, Milica .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (02)
[3]   Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering [J].
Ahadian, Samad ;
Huyer, Locke Davenport ;
Estili, Mehdi ;
Yee, Bess ;
Smith, Nathaniel ;
Xu, Zhensong ;
Sun, Yu ;
Radisic, Milica .
ACTA BIOMATERIALIA, 2017, 52 :81-91
[4]   Carbon Nanotubes and Graphene-Based Nanomaterials for Stem Cell Differentiation and Tissue Regeneration [J].
Ahadian, Samad ;
Obregon, Raquel ;
Ramon-Azcon, Javier ;
Salazar, Georgina ;
Shiku, Hitoshi ;
Ramalingam, Murugan ;
Matsue, Tomokazu .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (09) :8862-8880
[5]   Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films [J].
Ahadian, Samad ;
Ramon-Azcon, Javier ;
Chang, Haixin ;
Liang, Xiaobin ;
Kaji, Hirokazu ;
Shiku, Hitoshi ;
Nakajima, Ken ;
Ramalingam, Murugan ;
Wu, Hongkai ;
Matsue, Tomokazu ;
Khademhosseini, Ali .
RSC ADVANCES, 2014, 4 (19) :9534-9541
[6]   Electrical stimulation as a biomimicry tool for regulating muscle cell behavior [J].
Ahadian, Samad ;
Ostrovidov, Serge ;
Hosseini, Vahid ;
Kaji, Hirokazu ;
Ramalingam, Murugan ;
Bae, Hojae ;
Khademhosseini, Ali .
ORGANOGENESIS, 2013, 9 (02) :87-92
[7]   Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue [J].
Ahadian, Samad ;
Ramon-Azcon, Javier ;
Ostrovidov, Serge ;
Camci-Unal, Gulden ;
Hosseini, Vahid ;
Kaji, Hirokazu ;
Ino, Kosuke ;
Shiku, Hitoshi ;
Khademhosseini, Ali ;
Matsue, Tomokazu .
LAB ON A CHIP, 2012, 12 (18) :3491-3503
[8]   Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering [J].
Ashammakhi, N. ;
Ndreu, A. ;
Piras, A. M. ;
Nikkola, L. ;
Sindelar, T. ;
Ylikauppila, H. ;
Harlin, A. ;
Gomes, M. E. ;
Neves, N. M. ;
Chiellini, E. ;
Chiellini, F. ;
Hasirci, V. ;
Redl, H. ;
Reis, R. L. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) :862-882
[9]   Nanosize, mega-impact, potential for medical applications of nanotechnology [J].
Ashammakhi, N .
JOURNAL OF CRANIOFACIAL SURGERY, 2006, 17 (01) :3-7
[10]   Stimuli-Responsive Biomaterials: Next Wave [J].
Ashammakhi, Nureddin ;
Kaarela, Outi .
JOURNAL OF CRANIOFACIAL SURGERY, 2017, 28 (07) :1647-1648