Advances and Future Perspectives in 4D Bioprinting

被引:171
作者
Ashammakhi, Nureddin [1 ,2 ,3 ]
Ahadian, Samad [1 ,2 ]
Fan Zengjie [1 ,2 ,4 ]
Suthiwanich, Kasinan [1 ,2 ,5 ]
Lorestani, Farnaz [1 ,2 ,6 ,7 ]
Orive, Gorka [8 ,9 ,10 ]
Ostrovidov, Serge [1 ,2 ]
Khademhosseini, Ali [1 ,2 ,11 ,12 ,13 ,14 ]
机构
[1] Univ Calif Los Angeles, C MIT, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Oulu Univ, Dept Surg, Div Plast Surg, Oulu 8000, Finland
[4] Lanzhou Univ, Sch Stomatol, Lanzhou 730000, Gansu, Peoples R China
[5] Tokyo Inst Technol, Dept Mat Sci & Engn, Sch Mat & Chem Technol, Tokyo 1528550, Japan
[6] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur 50603, Malaysia
[7] Univ Malaya, Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[8] Univ Basque Country, UPV EHU, Fac Pharm, Vitoria 48940, Spain
[9] CIBER BBN, Networking Biomed Res Ctr Bioengn Biomat & Nanome, Vitoria 28029, Spain
[10] Univ Basque Country, Fdn Eduardo Anitua, Univ Inst Regenerat Med & Oral Implantol UIRMI, Vitoria 48940, Spain
[11] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90095 USA
[12] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA
[13] King Abdulaziz Univ, Ctr Nanotechnol, Dept Phys, Jeddah 21589, Saudi Arabia
[14] Konkuk Univ, Dept Bioind Technol, Coll Anim Biosci & Technol, Seoul 05029, South Korea
基金
美国国家卫生研究院;
关键词
4D bioprinting; additive manufacturing; bioinks; stimuli-responsive biomaterials; tissue engineering; DRUG-DELIVERY; ELECTRICAL-STIMULATION; CARBON NANOTUBES; ON-DEMAND; HYDROGELS; GRAPHENE; POLYMER; CELLS; PH; DIFFERENTIATION;
D O I
10.1002/biot.201800148
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Three-dimensionally printed constructs are static and do not recapitulate the dynamic nature of tissues. Four-dimensional (4D) bioprinting has emerged to include conformational changes in printed structures in a predetermined fashion using stimuli-responsive biomaterials and/or cells. The ability to make such dynamic constructs would enable an individual to fabricate tissue structures that can undergo morphological changes. Furthermore, other fields (bioactuation, biorobotics, and biosensing) will benefit from developments in 4D bioprinting. Here, the authors discuss stimuli-responsive biomaterials as potential bioinks for 4D bioprinting. Natural cell forces can also be incorporated into 4D bioprinted structures. The authors introduce mathematical modeling to predict the transition and final state of 4D printed constructs. Different potential applications of 4D bioprinting are also described. Finally, the authors highlight future perspectives for this emerging technology in biomedicine.
引用
收藏
页数:12
相关论文
共 116 条
  • [1] Smart scaffolds in tissue regeneration
    Ahadian, Samad
    Khademhosseini, Ali
    [J]. REGENERATIVE BIOMATERIALS, 2018, 5 (03) : 125 - 128
  • [2] Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies
    Ahadian, Samad
    Civitarese, Robert
    Bannerman, Dawn
    Mohammadi, Mohammad Hossein
    Lu, Rick
    Wang, Erika
    Davenport-Huyer, Locke
    Lai, Ben
    Zhang, Boyang
    Zhao, Yimu
    Mandla, Serena
    Korolj, Anastasia
    Radisic, Milica
    [J]. ADVANCED HEALTHCARE MATERIALS, 2018, 7 (02)
  • [3] Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering
    Ahadian, Samad
    Huyer, Locke Davenport
    Estili, Mehdi
    Yee, Bess
    Smith, Nathaniel
    Xu, Zhensong
    Sun, Yu
    Radisic, Milica
    [J]. ACTA BIOMATERIALIA, 2017, 52 : 81 - 91
  • [4] Carbon Nanotubes and Graphene-Based Nanomaterials for Stem Cell Differentiation and Tissue Regeneration
    Ahadian, Samad
    Obregon, Raquel
    Ramon-Azcon, Javier
    Salazar, Georgina
    Shiku, Hitoshi
    Ramalingam, Murugan
    Matsue, Tomokazu
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2016, 16 (09) : 8862 - 8880
  • [5] Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films
    Ahadian, Samad
    Ramon-Azcon, Javier
    Chang, Haixin
    Liang, Xiaobin
    Kaji, Hirokazu
    Shiku, Hitoshi
    Nakajima, Ken
    Ramalingam, Murugan
    Wu, Hongkai
    Matsue, Tomokazu
    Khademhosseini, Ali
    [J]. RSC ADVANCES, 2014, 4 (19): : 9534 - 9541
  • [6] Electrical stimulation as a biomimicry tool for regulating muscle cell behavior
    Ahadian, Samad
    Ostrovidov, Serge
    Hosseini, Vahid
    Kaji, Hirokazu
    Ramalingam, Murugan
    Bae, Hojae
    Khademhosseini, Ali
    [J]. ORGANOGENESIS, 2013, 9 (02) : 87 - 92
  • [7] Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue
    Ahadian, Samad
    Ramon-Azcon, Javier
    Ostrovidov, Serge
    Camci-Unal, Gulden
    Hosseini, Vahid
    Kaji, Hirokazu
    Ino, Kosuke
    Shiku, Hitoshi
    Khademhosseini, Ali
    Matsue, Tomokazu
    [J]. LAB ON A CHIP, 2012, 12 (18) : 3491 - 3503
  • [8] Biodegradable nanomats produced by electrospinning: Expanding multifunctionality and potential for tissue engineering
    Ashammakhi, N.
    Ndreu, A.
    Piras, A. M.
    Nikkola, L.
    Sindelar, T.
    Ylikauppila, H.
    Harlin, A.
    Gomes, M. E.
    Neves, N. M.
    Chiellini, E.
    Chiellini, F.
    Hasirci, V.
    Redl, H.
    Reis, R. L.
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (03) : 862 - 882
  • [9] Nanosize, mega-impact, potential for medical applications of nanotechnology
    Ashammakhi, N
    [J]. JOURNAL OF CRANIOFACIAL SURGERY, 2006, 17 (01) : 3 - 7
  • [10] Stimuli-Responsive Biomaterials: Next Wave
    Ashammakhi, Nureddin
    Kaarela, Outi
    [J]. JOURNAL OF CRANIOFACIAL SURGERY, 2017, 28 (07) : 1647 - 1648