Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings

被引:301
|
作者
Verstraete, David [1 ]
Ferrada, Andres [2 ]
Lopez Droguett, Enrique [1 ,3 ]
Meruane, Viviana [3 ]
Modarres, Mohammad [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[2] Univ Chile, Comp Sci Dept, Santiago, Chile
[3] Univ Chile, Mech Engn Dept, Santiago, Chile
关键词
ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINES; WAVELET;
D O I
10.1155/2017/5067651
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Traditional feature extraction and selection is a labor-intensive process requiring expert knowledge of the relevant features pertinent to the system. This knowledge is sometimes a luxury and could introduce added uncertainty and bias to the results. To address this problem a deep learning enabled featureless methodology is proposed to automatically learn the features of the data. Time-frequency representations of the raw data are used to generate image representations of the raw signal, which are then fed into a deep convolutional neural network (CNN) architecture for classification and fault diagnosis. This methodology was applied to two public data sets of rolling element bearing vibration signals. Three time-frequency analysis methods (short-time Fourier transform, wavelet transform, and Hilbert-Huang transform) were explored for their representation effectiveness. The proposed CNN architecture achieves better results with less learnable parameters than similar architectures used for fault detection, including cases with experimental noise.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Intelligent Fault Diagnosis for Planetary Gearbox Using Time-Frequency Representation and Deep Reinforcement Learning
    Wang, Hui
    Xu, Jiawen
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (02) : 985 - 998
  • [22] Multisensor Fusion Time-Frequency Analysis of Thruster Blade Fault Diagnosis Based on Deep Learning
    Tsai, Chia-Ming
    Wang, Chiao-Sheng
    Chung, Yu-Jen
    Sun, Yung-Da
    Perng, Jau-Woei
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19761 - 19771
  • [23] Time-Frequency Analysis of Hot Rolling Using Manifold Learning
    Garcia, Francisco J.
    Diaz, Ignacio
    Alvarez, Ignacio
    Perez, Daniel
    Ordonez, Daniel G.
    Dominguez, Manuel
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PT I, 2011, 363 : 150 - +
  • [24] Rolling Bearings Time and Frequency Domain Fault Diagnosis Method based on Kurtosis Analysis
    Deng Xiao-wen
    Yang Ping
    Ren Jin-sheng
    Yang Yi-wei
    2014 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (IEEE PES APPEEC), 2014,
  • [25] A hybrid deep-learning model for fault diagnosis of rolling bearings
    Xu, Yang
    Li, Zhixiong
    Wang, Shuqing
    Li, Weihua
    Sarkodie-Gyan, Thompson
    Feng, Shizhe
    MEASUREMENT, 2021, 169
  • [26] A robust intelligent fault diagnosis method for rolling element bearings based on deep distance metric learning
    Li, Xiang
    Zhang, Wei
    Din, Qian
    NEUROCOMPUTING, 2018, 310 : 77 - 95
  • [27] Identification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques
    Jadhav, Prashant S.
    Salunkhe, Vishal G.
    Desavale, R. G.
    Khot, S. M.
    Shinde, P. V.
    Jadhav, P. M.
    Gadyanavar, Pramila R.
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (09):
  • [28] Towards a Fault Diagnosis Method for Rolling Bearings with Time-Frequency Region-Based Convolutional Neural Network
    Tang, Jiahui
    Wu, Jimei
    Hu, Bingbing
    Qing, Jiajuan
    MACHINES, 2022, 10 (12)
  • [29] Fault diagnosis of rolling element bearings using artificial neural networks
    Rajamani, L
    Dattagupta, R
    CRITICAL LINK: DIAGNOSIS TO PROGNOSIS, 1997, : 783 - 789
  • [30] Fault diagnosis for rolling element bearings based on independent component analysis
    School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
    Harbin Gongye Daxue Xuebao, 2008, 9 (1363-1365):