Asymptotic soliton train solutions of Kaup-Boussinesq equations

被引:32
作者
Kamchatnov, AM [1 ]
Kraenkel, RA
Umarov, BA
机构
[1] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[3] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084 84, Uzbekistan
基金
俄罗斯基础研究基金会; 巴西圣保罗研究基金会;
关键词
D O I
10.1016/S0165-2125(03)00062-3
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 40 条