Asymptotic soliton train solutions of Kaup-Boussinesq equations

被引:32
|
作者
Kamchatnov, AM [1 ]
Kraenkel, RA
Umarov, BA
机构
[1] Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[3] Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084 84, Uzbekistan
关键词
D O I
10.1016/S0165-2125(03)00062-3
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Asymptotic soliton trains arising from a 'large and smooth' enough initial pulse are investigated by the use of the quasiclassical quantization method for the case of Kaup-Boussinesq shallow water equations. The parameter varying along the soliton train is determined by the Bohr-Sommerfeld quantization rule which generalizes the usual rule to the case of 'two potentials' h(0)(x) and u(0)(x) representing initial distributions of height and velocity, respectively. The influence of the initial velocity u(0)(x) on the asymptotic stage of the evolution is determined. Excellent agreement of numerical solutions of the Kaup-Boussinesq equations with predictions of the asymptotic theory is found. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:355 / 365
页数:11
相关论文
共 50 条
  • [1] The generalized Kaup-Boussinesq equation: multiple soliton solutions
    Wazwaz, Abdul-Majid
    WAVES IN RANDOM AND COMPLEX MEDIA, 2015, 25 (04) : 473 - 481
  • [2] Extraction of soliton solutions for the fractional Kaup-Boussinesq system: A comparative study
    Alsaud, H.
    Raza, N.
    Arshed, S.
    Butt, A. Rashid
    Inc, M.
    REVISTA MEXICANA DE FISICA, 2024, 70 (04)
  • [3] Solutions and Conservation Laws for a Kaup-Boussinesq System
    Motsepa, Tanki
    Abudiab, Mufid
    Khalique, Chaudry Masood
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [4] Invariant solutions and conservation laws of the generalized Kaup-Boussinesq equation
    Chen, Cheng
    Jiang, Yao-Lin
    WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (01) : 138 - 152
  • [5] Proliferation scheme for Kaup-Boussinesq system
    Borisov, AB
    Pavlov, MP
    Zykov, SA
    PHYSICA D, 2001, 152 : 104 - 109
  • [6] Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system
    Zhou, Jiangbo
    Tian, Lixin
    Fan, Xinghua
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3229 - 3235
  • [7] Trigonometric shock waves in the Kaup-Boussinesq system
    Ivanov, Sergey K.
    Kamchatnov, Anatoly M.
    NONLINEAR DYNAMICS, 2022, 108 (03) : 2505 - 2512
  • [9] Exact solutions and conservation laws of multi Kaup-Boussinesq system with fractional order
    Singla, Komal
    Rana, M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [10] LINEAR STABILITY OF EXACT SOLUTIONS FOR THE GENERALIZED KAUP-BOUSSINESQ EQUATION AND THEIR DYNAMICAL EVOLUTIONS
    Gong, Ruizhi
    Shi, Yuren
    Wang, Deng-Shan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (07) : 3355 - 3378