Multiple positive solutions for a quasilinear nonhomogeneous Neumann problems with critical Hardy exponents

被引:14
作者
Deng, Yinbin [1 ]
Jin, Lingyu [1 ]
机构
[1] Huazhong Normal Univ, Dept Math, Wuhan 430079, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
neumann boundary value problems; positive solutions; p-Laplacian; Hardy equality;
D O I
10.1016/j.na.2006.07.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence, nonexistence and multiplicity of positive solutions for nonhomogeneous Neumann boundary value problems of the type [GRAPHICS] (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3261 / 3275
页数:15
相关论文
共 9 条
[1]   Multiplicity of positive solutions for a class of quasilinear nonhomogeneous Neumann problems [J].
Abreu, EAM ;
do O, JM ;
Medeiros, ES .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) :1443-1471
[2]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   Existence of multiple positive solutions for inhomogeneous Neumann problem [J].
Deng, YB ;
Peng, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (01) :155-174
[5]   ON THE EXISTENCE OF POSITIVE ENTIRE SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION [J].
DING, WY ;
NI, WM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 91 (04) :283-308
[6]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[8]   NEUMANN PROBLEMS OF SEMILINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
WANG, XJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (02) :283-310
[9]  
Willem M., 1996, Minimax theorems, V24