Deep learning in vision-based static hand gesture recognition

被引:218
作者
Oyedotun, Oyebade K. [1 ]
Khashman, Adnan [1 ,2 ]
机构
[1] ECRAA, Mersin 10, Lefkosa, Northern Cyprus, Turkey
[2] Univ Kyrenia, Mersin 10, Kyrenia, Northern Cyprus, Turkey
关键词
Hand gesture recognition; Human-computer interaction; Neural network; Deep learning; NETWORK;
D O I
10.1007/s00521-016-2294-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hand gesture for communication has proven effective for humans, and active research is ongoing in replicating the same success in computer vision systems. Human-computer interaction can be significantly improved from advances in systems that are capable of recognizing different hand gestures. In contrast to many earlier works, which consider the recognition of significantly differentiable hand gestures, and therefore often selecting a few gestures from the American Sign Language (ASL) for recognition, we propose applying deep learning to the problem of hand gesture recognition for the whole 24 hand gestures obtained from the Thomas Moeslund's gesture recognition database. We show that more biologically inspired and deep neural networks such as convolutional neural network and stacked denoising autoencoder are capable of learning the complex hand gesture classification task with lower error rates. The considered networks are trained and tested on data obtained from the above-mentioned public database; results comparison is then made against earlier works in which only small subsets of the ASL hand gestures are considered for recognition.
引用
收藏
页码:3941 / 3951
页数:11
相关论文
共 50 条
  • [1] Deep learning in vision-based static hand gesture recognition
    Oyebade K. Oyedotun
    Adnan Khashman
    Neural Computing and Applications, 2017, 28 : 3941 - 3951
  • [2] Vision-based hand gesture recognition using deep learning for the interpretation of sign language
    Sharma, Sakshi
    Singh, Sukhwinder
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 182 (182)
  • [3] On an algorithm for Vision-based hand gesture recognition
    Ghosh, Dipak Kumar
    Ari, Samit
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (04) : 655 - 662
  • [4] On an algorithm for Vision-based hand gesture recognition
    Dipak Kumar Ghosh
    Samit Ari
    Signal, Image and Video Processing, 2016, 10 : 655 - 662
  • [5] Survey on vision-based dynamic hand gesture recognition
    Tripathi, Reena
    Verma, Bindu
    VISUAL COMPUTER, 2024, 40 (09) : 6171 - 6199
  • [6] Literature review of vision-based dynamic gesture recognition using deep learning techniques
    Jain, Rahul
    Karsh, Ram Kumar
    Barbhuiya, Abul Abbas
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (22)
  • [7] Vision Based Static Hand Gesture Recognition Techniques
    Sharrma, Ananyaa
    Khandelwal, Ayush
    Kaur, Kavleen
    Joshi, Shivani
    Upadhyay, Richa
    Prabhu, Sameer
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 705 - 709
  • [8] Hand Gesture Recognition Using Deep Learning
    Hussain, Soeb
    Saxena, Rupal
    Han, Xie
    Khan, Jameel Ahmed
    Shin, Hyunchul
    PROCEEDINGS INTERNATIONAL SOC DESIGN CONFERENCE 2017 (ISOCC 2017), 2017, : 48 - 49
  • [9] A Real-Time Computer Vision-Based Static and Dynamic Hand Gesture Recognition System
    Jasim, Mahmood
    Zhang, Tao
    Hasanuzzaman, Md.
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2014, 14 (1-2)
  • [10] The Vision-Based Hand Gesture Recognition Using Blob Analysis
    Ganokratanaa, Thittaporn
    Pumrin, Suree
    2017 INTERNATIONAL CONFERENCE ON DIGITAL ARTS, MEDIA AND TECHNOLOGY (ICDAMT): DIGITAL ECONOMY FOR SUSTAINABLE GROWTH, 2017, : 336 - 341