Twist Angle-Dependent Molecular Intercalation and Sheet Resistance in Bilayer Graphene

被引:10
作者
Araki, Yuji [1 ]
Solis-Fernandez, Pablo [2 ]
Lin, Yung-Chang [3 ]
Motoyama, Amane [1 ]
Kawahara, Kenji [2 ]
Maruyama, Mina [6 ]
Gao, Yanlin
Matsumoto, Rika [4 ]
Suenaga, Kazu [5 ]
Okada, Susumu [6 ]
Ago, Hiroki [1 ,2 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan
[2] Kyushu Univ, Global Innovat Ctr GIC, Fukuoka 8168580, Japan
[3] Natl Inst Adv Ind Sci & Technol, Nanomat Res Inst, Tsukuba 3058565, Japan
[4] Tokyo Polytech Univ, Fac Engn, Atsugi, Kanagawa 2430297, Japan
[5] Osaka Univ, Inst Sci & Ind Res ISIR SANKEN, Osaka 5670047, Japan
[6] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba 3058577, Japan
关键词
bilayer graphene; twist angle; intercalation; sheet resistance; metal chlorides; LIGHT-EMITTING-DIODES; GRAPHITE-INTERCALATION; LAYER GRAPHENE; SUPERCONDUCTIVITY; CUCL2; FECL3;
D O I
10.1021/acsnano.2c03997
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bilayer graphene (BLG) has a two-dimensional (2D) interlayer nanospace that can be used to intercalate molecules and ions, resulting in a significant change of its electronic and magnetic properties. Intercalation of BLG with different materials, such as FeCl3, MoCl5, Li ions, and Ca ions, has been demonstrated. However, little is known about how the twist angle of the BLG host affects intercalation. Here, by using artificially stacked BLG with controlled twist angles, we systematically investigated the twist angle dependence of intercalation of metal chlorides. We discovered that BLG with high twist angles of > 15 is more favorable for intercalation than BLG with low twist angles. Density functional theory calculations suggested that the weaker interlayer coupling in high twist angle BLG is the key for effective intercalation. Scanning transmission electron microscope observations revealed that co-intercalation of AlCl3 and CuCl2 molecules into BLG gives various 2D structures in the confined interlayer nanospace. Moreover, before intercalation we observed a significantly lower sheet resistance in BLG with high twist angles (281 +/- 98 omega/?) than that in AB stacked BLG (580 +/- 124 omega/?). Intercalation further decreased the sheet resistance, reaching values as low as 48 omega/?, which is the lowest value reported so far for BLG. This work provides a twist angle-dependent phenomenon, in which enhanced intercalation and drastic changes of the electrical properties can be realized by controlling the stacking angle of adjacent graphene layers.
引用
收藏
页码:14075 / 14085
页数:11
相关论文
共 47 条
[1]   Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation [J].
Ago, Hiroki ;
Okada, Susumu ;
Miyata, Yasumitsu ;
Matsuda, Kazunari ;
Koshino, Mikito ;
Ueno, Kosei ;
Nagashio, Kosuke .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2022, 23 (01) :275-299
[2]   Growth Dynamics of Single-Layer Graphene on Epitaxial Cu Surfaces [J].
Ago, Hiroki ;
Ohta, Yujiro ;
Hibino, Hiroki ;
Yoshimura, Daisuke ;
Takizawa, Rina ;
Uchida, Yuki ;
Tsuji, Masaharu ;
Okajima, Toshihiro ;
Mitani, Hisashi ;
Mizuno, Seigi .
CHEMISTRY OF MATERIALS, 2015, 27 (15) :5377-5385
[3]   Epitaxial Growth and Electronic Properties of Large Hexagonal Graphene Domains on Cu(111) Thin Film [J].
Ago, Hiroki ;
Kawahara, Kenji ;
Ogawa, Yui ;
Tanoue, Shota ;
Bissett, Mark A. ;
Tsuji, Masaharu ;
Sakaguchi, Hidetsugu ;
Koch, Roland J. ;
Fromm, Felix ;
Seyller, Thomas ;
Komatsu, Katsuyoshi ;
Tsukagoshi, Kazuhito .
APPLIED PHYSICS EXPRESS, 2013, 6 (07)
[4]   Dirac electrons in a dodecagonal graphene quasicrystal [J].
Ahn, Sung Joon ;
Moon, Pilkyung ;
Kim, Tae-Hoon ;
Kim, Hyun-Woo ;
Shin, Ha-Chul ;
Kim, Eun Hye ;
Cha, Hyun Woo ;
Kahng, Se-Jong ;
Kim, Philip ;
Koshino, Mikito ;
Son, Young-Woo ;
Yang, Cheol-Woong ;
Ahn, Joung Real .
SCIENCE, 2018, 361 (6404) :782-+
[5]   Large-area functionalized CVD graphene for work function matched transparent electrodes [J].
Bointon, Thomas H. ;
Jones, Gareth F. ;
De Sanctis, Adolfo ;
Hill-Pearce, Ruth ;
Craciun, Monica F. ;
Russo, Saverio .
SCIENTIFIC REPORTS, 2015, 5
[6]   Atomic-resolution visualization and doping effects of complex structures in intercalated bilayer graphene [J].
Bonacum, Jason P. ;
O'Hara, Andrew ;
Bao, De-Liang ;
Ovchinnikov, Oleg S. ;
Zhang, Yan-Fang ;
Gordeev, Georgy ;
Arora, Sonakshi ;
Reich, Stephanie ;
Idrobo, Juan-Carlos ;
Haglund, Richard F. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill, I .
PHYSICAL REVIEW MATERIALS, 2019, 3 (06)
[7]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[8]  
Dai Z., 2021, PHYS REV LETT, P127
[9]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)