A specific 5'-modified amino group oligonucleotide (Primer 1), 15-mers in length, is selectively coupled with the carboxyl terminated 16-mercaptohexadecanoic acid (MHDA) chemically adsorbed on Au and subsequently hybridized with Antisense Primer. The amide-coupling process is of significance to create an intermediate structure for the purpose of adding Primer 1, while the hybridization reaction is relevant to various diagnostic purposes to determine the presence in nucleic acids for a target sequence. In this work, the coupling setting was particularly emphasized by varying commonly used temperatures and pH values with a definite concentration of coupling agents (i.e., 10 mM). The recombination with analogous hybridization treatment was investigated using high resolution X-ray photoelectron spectroscopy and a 75 degrees grazing angle Fourier transform infrared spectrometer. On the basis of the spectroscopic studies, the optimized conditions for the coupling process that is also correlated with the molecular density of subsequent hybridization process oil MHDA/Au have been proposed at 37 degrees C and a pH value of 4.5. Therefore, it is pertinent to intensify the joining of short-chain DNA strands by complementary base pairing in diagnostic applications such as the identification of single nucleotide polymorphisms.