In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive

被引:78
|
作者
Ruan, Digen [1 ]
Chen, Min [1 ,2 ,3 ]
Wen, Xinyang [1 ]
Li, Shuqing [1 ]
Zhou, Xianggui [1 ]
Che, Yanxia [1 ]
Chen, Jiakun [1 ]
Xiang, Wenjin [1 ]
Li, Suli [4 ]
Wang, Hai [4 ]
Liu, Xiang [5 ]
Li, Weishan [1 ,2 ,3 ]
机构
[1] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Natl & Local Joint Engn Res Ctr MPTES High Energy, Engn Res Ctr MTEES, Res Ctr BMET Guangdong Prov,Minist Educ, Guangzhou 510006, Peoples R China
[3] South China Normal Univ, Key Lab ETESPG GHEI, Guangzhou 510006, Peoples R China
[4] Zhuhai CosMX Battery Co Ltd, Zhuhai 519180, Peoples R China
[5] Nanjing Tech Univ, Coll Energy Sci & Engn, Nanjing 211816, Peoples R China
关键词
High-voltage cathode; Interface film; Electrolyte additive; Cycling stability; LITHIUM METAL BATTERIES; MANGANESE OXIDE; LI-ION; ELECTROCHEMICAL PERFORMANCE; SELF-DISCHARGE; COBALT OXIDE; STABILITY; INTERPHASE; MECHANISM; PHOSPHATE;
D O I
10.1016/j.nanoen.2021.106535
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a novel electrolyte additive, 5-acetylthiophene-2-carbonitrile (ATCN) with three functional groups (thiophene, nitrile and carbonyl), to in situ construct a stable cathode interface film that can significantly improve the cycling stability of LiCoO2 cathode under high-voltage. Adding 0.2% of ATCN into a base electrolyte, the capacity retention of LiCoO2/Li cell under 4.5 V is enhanced from 53% to 91% after 200 cycles at 1 C, and the cycle number of commercial LiCoO2/graphite pouch cell (34 Ah) with 10% capacity loss at 0.5 C under a cut-off voltage of 4.45 V is increased from 550 to 800. Experimental characterizations and theoretical calculations reveal that ATCN is preferentially oxidized on LiCoO2 cathode and utilizes its decomposition intermediates to convert the detrimental components, the hydrogen fluoride and water present in the electrolyte, and the lithium oxide and carbonate resulting from the electrolyte decomposition, into a unique film texture comprised of underneath compacted lithium salts and outer thiophene polymers. The as-constructed film significantly improves the cathode/electrolyte interface stability and the cycling stability of the cell. Such an effective strategy to address the interface instability has never been reported before and paves a new path to improve the energy density of commercial lithium-ion batteries via enhancing cut-off charge voltage.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Three-Component Functional Additive in a LiPF6-Based Carbonate Electrolyte for a High-Voltage LiCoO2/Graphite Battery System
    Pang, Chunguang
    Xu, Gaojie
    An, Weizhong
    Ding, Guoliang
    Liu, Xiaochen
    Chai, Jingchao
    Ma, Jun
    Liu, Haisheng
    Cui, Guanglei
    ENERGY TECHNOLOGY, 2017, 5 (11) : 1979 - 1989
  • [42] Enabling Stable Cycling of 4.6 V High-Voltage LiCoO2 with an In Situ-Modified PEGDA-Based Quasi-Solid Electrolyte
    Chen, Huiling
    He, Pan
    Li, Meng
    Wen, Yuehua
    Wang, Yue
    Qiu, Jingyi
    Cao, Gaoping
    Zhao, Pengcheng
    Zhang, Songtong
    Ming, Hai
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04) : 5170 - 5181
  • [43] SnO2-coated LiCoO2 cathode material for high-voltage applications in lithium-ion batteries
    Hudaya, Chairul
    Park, Ji Hun
    Lee, Joong Kee
    Choi, Wonchang
    SOLID STATE IONICS, 2014, 256 : 89 - 92
  • [44] Interfacial Design for a 4.6 V High-Voltage Single-Crystalline LiCoO2 Cathode
    Zhang, Jiaxun
    Wang, Peng-Fei
    Bai, Panxing
    Wan, Hongli
    Liu, Sufu
    Hou, Singyuk
    Pu, Xiangjun
    Xia, Jiale
    Zhang, Weiran
    Wang, Zeyi
    Nan, Bo
    Zhang, Xiyue
    Xu, Jijian
    Wang, Chunsheng
    ADVANCED MATERIALS, 2022, 34 (08)
  • [45] Stabilizing a High-Voltage Lithium-Rich Layered Oxide Cathode with a Novel Electrolyte Additive
    Lan, Jianlian
    Zheng, Qinfeng
    Zhou, Hebing
    Li, Jianhui
    Xing, Lidan
    Xu, Kang
    Fan, Weizhen
    Yu, Le
    Li, Weishan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (32) : 28841 - 28850
  • [46] In-situ Coating of Cathode by Electrolyte Additive for High-voltage Performance of Lithium-ion Batteries
    Yang, Juping
    Zhang, Yufeng
    Zhao, Peng
    Shang, Yuming
    Wang, Li
    He, Xiangming
    Wang, Jianlong
    ELECTROCHIMICA ACTA, 2015, 158 : 202 - 208
  • [47] In Situ X-ray Diffraction of LiCoO2 in Thin-Film Batteries under High-Voltage Charging
    Ohnishi, Tsuyoshi
    Mitsuishi, Kazutaka
    Takada, Kazunori
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 14372 - 14379
  • [48] A Safe Electrolyte Enriched with Flame-Retardant Solvents for High-Voltage LiCoO2||Graphite Pouch Cells
    Yang, Chao
    Zhou, Xing
    Sun, Ruitao
    Hu, Wenxi
    Wang, Meilong
    Dong, Xiaoli
    Piao, Nan
    Han, Jin
    Chen, Wen
    You, Ya
    ACS ENERGY LETTERS, 2024, 9 (11): : 5364 - 5372
  • [49] Constructing a Low-Impedance Interface on a High-Voltage LiNi0.8Co0.1Mn0.1O2 Cathode with 2,4,6-Triphenyl Boroxine as a Film-Forming Electrolyte Additive for Li-Ion Batteries
    Li, Guanjie
    Liao, Youhao
    Li, Zifei
    Xu, Ning
    Lu, Yikeng
    Lan, Guangyuan
    Sun, Gengzhi
    Li, Weishan
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (33) : 37013 - 37026
  • [50] Methyl 2,2-Difluoro-2-(Fluorosulfonyl) Acetate as a Novel Electrolyte Additive for High-Voltage LiCoO2/Graphite Pouch Li-Ion Cells
    Xiang, Fuyou
    Wang, Pipi
    Cheng, Hao
    ENERGY TECHNOLOGY, 2020, 8 (05)