ENUMERATION OF SET-THEORETIC SOLUTIONS TO THE YANG-BAXTER EQUATION

被引:10
作者
Akgun, O. [1 ]
Mereb, M. [2 ,3 ]
Vendramin, L. [2 ,3 ,4 ]
机构
[1] Univ St Andrews, Sch Comp Sci, St Andrews KY16 9SX, Fife, Scotland
[2] Univ Buenos Aires, FCEN, CONICET, IMAS, Pab 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, FCEN, Dept Matemat, Pab 1,Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[4] Vrije Univ Brussel, Dept Math, Pl Laan 2, B-1050 Brussels, Belgium
关键词
Yang-Baxter; biquandles; constraint programming; SKEW BRACES;
D O I
10.1090/mcom/3696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use Constraint Satisfaction methods to enumerate and construct set-theoretic solutions to the Yang???Baxter equation of small size. We show that there are 321,931 involutive solutions of size nine, 4,895,272 involutive solutions of size ten and 422,449,480 non-involutive solution of size eight. Our method is then used to enumerate non-involutive biquandles.
引用
收藏
页码:1469 / 1481
页数:13
相关论文
共 41 条
[1]   Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces [J].
Acri, E. ;
Lutowski, R. ;
Vendramin, L. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (01) :91-115
[2]  
Ashford M, 2017, ELECTRON J COMB, V24
[3]   A family of irretractable square-free solutions of the Yang-Baxter equation [J].
Bachiller, David ;
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
FORUM MATHEMATICUM, 2017, 29 (06) :1291-1306
[4]   BIQUANDLES OF SMALL SIZE AND SOME INVARIANTS OF VIRTUAL AND WELDED KNOTS [J].
Bartholomew, Andrew ;
Fenn, Roger .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (07) :943-954
[5]   PARTITION-FUNCTION OF 8-VERTEX LATTICE MODEL [J].
BAXTER, RJ .
ANNALS OF PHYSICS, 1972, 70 (01) :193-&
[6]  
Blackburn SR, 2013, ELECTRON J COMB, V20
[7]   About a question of Gateva-Ivanova and Cameron on square-free set-theoretic solutions of the Yang-Baxter equation [J].
Castelli, Marco ;
Catino, Francesco ;
Pinto, Giuseppina .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (06) :2369-2381
[8]   Retractability of set theoretic solutions of the Yang-Baxter equation [J].
Cedo, Ferran ;
Jespers, Eric ;
Okninski, Jan .
ADVANCES IN MATHEMATICS, 2010, 224 (06) :2472-2484
[9]  
Childs LN, 2019, NEW YORK J MATH, V25, P574
[10]   ACTIONS OF SKEW BRACES AND SET-THEORETIC SOLUTIONS OF THE REFLECTION EQUATION [J].
De Commer, K. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2019, 62 (04) :1089-1113