Stochastic Dynamic Economic Dispatch of Wind-integrated Electricity and Natural Gas Systems Considering Security Risk Constraints

被引:29
作者
Chen, Zexing [1 ]
Zhu, Gelan [1 ]
Zhang, Yongjun [1 ]
Ji, Tianyao [1 ]
Liu, Ziwen [2 ]
Lin, Xiaoming [1 ]
Cai, Zexiang [1 ]
机构
[1] South China Univ Technol, Sch Elect Power Engn, Guangzhou 510640, Peoples R China
[2] Hohai Univ, Coll Energy & Elect Engn, Nanjing 210098, Peoples R China
基金
中国国家自然科学基金;
关键词
High wind power penetration; integrated electricity and natural gas system (IEGS); power-to-gas; security risk constraint; OPTIMAL POWER-FLOW; RENEWABLE ENERGY; UNCERTAINTY; MODEL; OPTIMIZATION; STRATEGIES; NETWORK; DEMAND; OPF;
D O I
10.17775/CSEEJPES.2019.00150
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the proportion of wind power generation increases in power systems, it is necessary to develop new ways for wind power accommodation and improve the existing power dispatch model. The power-to-gas technology, which offers a new approach to accommodate surplus wind power, is an excellent way to solve the former. Hence, this paper proposes to involve power-to-gas technology in the integrated electricity and natural gas systems (IEGSs). To solve the latter, on one hand, a new indicator, the scale factor of wind power integration, is introduced into the wind power stochastic model to better describe the uncertainty of grid-connected wind power; on the other hand, for quantizing and minimizing the impact of the uncertainties of wind power and system loads on system security, security risk constraints are established for the IEGS by the conditional value-at-risk method. By considering these two aspects, an MILP formulation of a security-risk based stochastic dynamic economic dispatch model for an IEGS is established, and GUROBI obtained from GAMS is used for the solution. Case studies are conducted on an IEGS consisting of a modified IEEE 39-bus system and the Belgium 20-node natural gas system to examine the effectiveness of the proposed dispatch model.
引用
收藏
页码:324 / 334
页数:11
相关论文
共 38 条
[1]   Coordination of Interdependent Natural Gas and Electricity Infrastructures for Firming the Variability of Wind Energy in Stochastic Day-Ahead Scheduling [J].
Alabdulwahab, Ahmed ;
Abusorrah, Abdullah ;
Zhang, Xiaping ;
Shahidehpour, Mohammad .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (02) :606-615
[2]  
[Anonymous], 2014, OPTIMIZATION ONLINE
[3]   Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods [J].
Azizipanah-Abarghooee, Rasoul ;
Niknam, Taher ;
Bina, Mohammad Amin ;
Zare, Mohsen .
ENERGY, 2015, 79 :50-67
[4]   Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty [J].
Bai, Linquan ;
Li, Fangxing ;
Cui, Hantao ;
Jiang, Tao ;
Sun, Hongbin ;
Zhu, Jinxiang .
APPLIED ENERGY, 2016, 167 :270-279
[5]   Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2 [J].
Bailera, Manuel ;
Lisbona, Pilar ;
Romeo, Luis M. ;
Espatolero, Sergio .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 69 :292-312
[6]   Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded [J].
Chen, Zexing ;
Zhang, Yongjun ;
Ji, Tianyao ;
Cai, Zexiang ;
Li, Licheng ;
Xu, Zhiheng .
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2018, 6 (03) :495-508
[7]   Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems [J].
Clegg, Stephen ;
Mancarella, Pierluigi .
IET GENERATION TRANSMISSION & DISTRIBUTION, 2016, 10 (03) :566-575
[8]   Integrated Power and Natural Gas Model for Energy Adequacy in Short-Term Operation [J].
Correa-Posada, Carlos M. ;
Sanchez-Martin, Pedro .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2015, 30 (06) :3347-3355
[9]   Security-Constrained Optimal Power and Natural-Gas Flow [J].
Correa-Posada, Carlos M. ;
Sanchez-Martin, Pedro .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (04) :1780-1787
[10]   Optimal Stochastic Design of Wind Integrated Energy Hub [J].
Dolatabadi, Amirhossein ;
Mohammadi-ivatloo, Behnam ;
Abapour, Mehdi ;
Tohidi, Sajjad .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (05) :2379-2388