Deleterious single nucleotide polymorphisms (SNPs) of human IFNAR2 gene facilitate COVID-19 severity in patients: a comprehensive in silico approach

被引:12
作者
Akter, Shamima [1 ]
Roy, Arpita Singha [2 ]
Tonmoy, Mahafujul Islam Quadery [2 ]
Islam, Md Sajedul [3 ]
机构
[1] George Mason Univ, Dept Bioinformat & Computat Biol, Fairfax, VA 22030 USA
[2] Noakhali Sci & Technol Univ, Dept Biotechnol & Genet Engn, Noakhali, Bangladesh
[3] Univ Barishal, Dept Biochem & Biotechnol, Barishal, Bangladesh
关键词
SNPs; IFNAR2; COVID-19; molecular docking; protein-protein interaction; molecular dynamics simulation; GTEx; PROTEIN-PROTEIN INTERACTIONS; RECEPTOR; SUSCEPTIBILITY; CORONAVIRUS; ANNOTATION; PREDICTION; MUTATIONS; SEQUENCE; IMMUNITY; DATABASE;
D O I
10.1080/07391102.2021.1957714
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In humans, the dimeric receptor complex IFNAR2-IFNAR1 accelerates cellular response triggered by type I interferon (IFN) family proteins in response to viral infection including Coronavirus infection. Studies have revealed the association of the IFNAR2 gene with severe illness in Coronavirus infection and indicated the association of genomic variants, i.e. single nucleotide polymorphisms (SNPs). However, comprehensive analysis of SNPs of the IFNAR2 gene has not been performed in both coding and non-coding region to find the causes of loss of function of IFNAR2 in COVID-19 patients. In this study, we have characterized coding SNPs (nsSNPs) of IFNAR2 gene using different bioinformatics tools and identified deleterious SNPs. We found 9 nsSNPs as pathogenic and disease-causing along with a decrease in protein stability. We employed molecular docking analysis that showed 5 nsSNPs to decrease binding affinity to IFN. Later, MD simulations showed that P136R mutant may destabilize crucial binding with the IFN molecule in response to COVID-19. Thus, P136R is likely to have a high impact on disrupting the structure of the IFNAR2 protein. GTEx portal analysis predicted 14 sQTLs and 5 eQTLs SNPs in lung tissues hampering the post-transcriptional modification (splicing) and altering the expression of the IFNAR2 gene. sQTLs and eQTLs SNPs potentially explain the reduced IFNAR2 production leading to severe diseases. These mutants in the coding and non-coding region of the IFNAR2 gene can help to recognize severe illness due to COVID 19 and consequently assist to develop an effective drug against the infection.
引用
收藏
页码:11173 / 11189
页数:17
相关论文
共 85 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[3]  
Akter S., 2021, SCI REP-UK, V63, P1
[4]   De novo Mutations (DNMs) in Autism Spectrum Disorder (ASD): Pathway and Network Analysis [J].
Alonso-Gonzalez, Aitana ;
Rodriguez-Fontenla, Cristina ;
Carracedo, Angel .
FRONTIERS IN GENETICS, 2018, 9
[5]   Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans [J].
Arunachalam, Prabhu S. ;
Wimmers, Florian ;
Mok, Chris Ka Pun ;
Perera, Ranawaka A. P. M. ;
Scott, Madeleine ;
Hagan, Thomas ;
Sigal, Natalia ;
Feng, Yupeng ;
Bristow, Laurel ;
Tsang, Owen Tak-Yin ;
Wagh, Dhananjay ;
Coller, John ;
Pellegrini, Kathryn L. ;
Kazmin, Dmitri ;
Alaaeddine, Ghina ;
Leung, Wai Shing ;
Chan, Jacky Man Chun ;
Chik, Thomas Shiu Hong ;
Choi, Chris Yau Chung ;
Huerta, Christopher ;
McCullough, Michele Paine ;
Lv, Huibin ;
Anderson, Evan ;
Edupuganti, Srilatha ;
Upadhyay, Amit A. ;
Bosinger, Steve E. ;
Maecker, Holden Terry ;
Khatri, Purvesh ;
Rouphael, Nadine ;
Peiris, Malik ;
Pulendran, Bali .
SCIENCE, 2020, 369 (6508) :1210-+
[6]   ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids [J].
Ashkenazy, Haim ;
Erez, Elana ;
Martz, Eric ;
Pupko, Tal ;
Ben-Tal, Nir .
NUCLEIC ACIDS RESEARCH, 2010, 38 :W529-W533
[7]   Autoantibodies against type I IFNs in patients with life-threatening COVID-19 [J].
Bastard, Paul ;
Rosen, Lindsey B. ;
Zhang, Qian ;
Michailidis, Eleftherios ;
Hoffmann, Hans-Heinrich ;
Zhang, Yu ;
Dorgham, Karim ;
Philippot, Quentin ;
Rosain, Jeremie ;
Beziat, Vivien ;
Manry, Jeremy ;
Shaw, Elana ;
Haljasmagi, Liis ;
Peterson, Part ;
Lorenzo, Lazaro ;
Bizien, Lucy ;
Trouillet-Assant, Sophie ;
Dobbs, Kerry ;
de Jesus, Adriana Almeida ;
Belot, Alexandre ;
Kallaste, Anne ;
Catherinot, Emilie ;
Tandjaoui-Lambiotte, Yacine ;
Le Pen, Jeremie ;
Kerner, Gaspard ;
Bigio, Benedetta ;
Seeleuthner, Yoann ;
Yang, Rui ;
Bolze, Alexandre ;
Spaan, Andras N. ;
Delmonte, Ottavia M. ;
Abers, Michael S. ;
Aiuti, Alessandro ;
Casari, Giorgio ;
Lampasona, Vito ;
Piemonti, Lorenzo ;
Ciceri, Fabio ;
Bilguvar, Kaya ;
Lifton, Richard P. ;
Vasse, Marc ;
Smadja, David M. ;
Migaud, Melanie ;
Hadjadj, Jerome ;
Terrier, Benjamin ;
Duffy, Darragh ;
Quintana-Murci, Lluis ;
van de Beek, Diederik ;
Roussel, Lucie ;
Vinh, Donald C. ;
Tangye, Stuart G. .
SCIENCE, 2020, 370 (6515) :423-+
[8]   Susceptibility to severe COVID-19 [J].
Beck, David B. ;
Aksentijevich, Ivona .
SCIENCE, 2020, 370 (6515) :404-405
[9]   PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations [J].
Bendl, Jaroslav ;
Stourac, Jan ;
Salanda, Ondrej ;
Pavelka, Antonin ;
Wieben, Eric D. ;
Zendulka, Jaroslav ;
Brezovsky, Jan ;
Damborsky, Jiri .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (01)
[10]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242