DETECT-LC: A 3D Deep Learning and Textural Radiomics Computational Model for Lung Cancer Staging and Tumor Phenotyping Based on Computed Tomography Volumes

被引:6
作者
Fathalla, Karma M. [1 ]
Youssef, Sherin M. [1 ]
Mohammed, Nourhan [1 ]
机构
[1] Arab Acad Sci & Technol, Comp Engn Dept, Alexandria 1029, Egypt
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 13期
关键词
radiomics; deep learning; 3D-CNN; computed tomography; staging; tumor phenotyping; CT;
D O I
10.3390/app12136318
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lung Cancer is one of the primary causes of cancer-related deaths worldwide. Timely diagnosis and precise staging are pivotal for treatment planning, and thus can lead to increased survival rates. The application of advanced machine learning techniques helps in effective diagnosis and staging. In this study, a multistage neurobased computational model is proposed, DETECT-LC learning. DETECT-LC handles the challenge of choosing discriminative CT slices for constructing 3D volumes, using Haralick, histogram-based radiomics, and unsupervised clustering. ALT-CNN-DENSE Net architecture is introduced as part of DETECT-LC for voxel-based classification. DETECT-LC offers an automatic threshold-based segmentation approach instead of the manual procedure, to help mitigate this burden for radiologists and clinicians. Also, DETECT-LC presents a slice selection approach and a newly proposed relatively light weight 3D CNN architecture to improve existing studies performance. The proposed pipeline is employed for tumor phenotyping and staging. DETECT-LC performance is assessed through a range of experiments, in which DETECT-LC attains outstanding performance surpassing its counterparts in terms of accuracy, sensitivity, F1-score and Area under Curve (AuC). For histopathology classification, DETECT-LC average performance achieved an improvement of 20% in overall accuracy, 0.19 in sensitivity, 0.16 in F1-Score and 0.16 in AuC over the state of the art. A similar enhancement is reached for staging, where higher overall accuracy, sensitivity and F1-score are attained with differences of 8%, 0.08 and 0.14.
引用
收藏
页数:23
相关论文
共 32 条
  • [31] Correlation Between Intranodular Vessels and Tumor Invasiveness of Lung Adenocarcinoma Presenting as Ground-glass Nodules A Deep Learning 3-Dimensional Reconstruction Algorithm-based Quantitative Analysis on Noncontrast Computed Tomography Images
    Zhao, Baolian
    Wang, Xiang
    Sun, Ke
    Kang, Han
    Zhang, Kai
    Yin, Hongkun
    Liu, Kai
    Xiao, Yi
    Liu, Shiyuan
    [J]. JOURNAL OF THORACIC IMAGING, 2023, 38 (05) : 297 - 303
  • [32] Deep Learning-Based Image Analysis for the Quantification of Tumor-Induced Angiogenesis in the 3D In Vivo Tumor Model-Establishment and Addition to Laser Speckle Contrast Imaging (LSCI)
    Kuri, Paulina Mena
    Pion, Eric
    Mahl, Lina
    Kainz, Philipp
    Schwarz, Siegfried
    Brochhausen, Christoph
    Aung, Thiha
    Haerteis, Silke
    [J]. CELLS, 2022, 11 (15)