Trivial Connections on Discrete Surfaces

被引:103
|
作者
Crane, Keenan [1 ]
Desbrun, Mathieu [1 ]
Schroeder, Peter [1 ,2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Tech Univ Munich, Inst Adv Study, Munich, Germany
关键词
D O I
10.1111/j.1467-8659.2010.01761.x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a straightforward algorithm for constructing connections on discrete surfaces that are as smooth as possible everywhere but on a set of isolated singularities with given index. We compute these connections by solving a single linear system built from standard operators. The solution can be used to design rotationally symmetric direction fields with user-specified singularities and directional constraints.
引用
收藏
页码:1525 / 1533
页数:9
相关论文
共 50 条
  • [21] Discrete connections on principal bundles: The discrete Atiyah sequence
    Fernandez, Javier
    Juchani, Mariana
    Zuccalli, Marcela
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 172
  • [22] Irreducible flat SL(2, R)-connections on the trivial holomorphic bundle
    Biswas, Indranil
    Dumitrescu, Sorin
    Heller, Sebastian
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 28 - 46
  • [23] On the local negativity of surfaces with numerically trivial canonical class
    Laface, Roberto
    Pokora, Piotr
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (02) : 237 - 253
  • [24] On the space of connections having non-trivial twisted harmonic spinors
    Bei, Francesco
    Waterstraat, Nils
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (09)
  • [25] Higher syzygies of surfaces with numerically trivial canonical bundle
    Daniele Agostini
    Alex Küronya
    Victor Lozovanu
    Mathematische Zeitschrift, 2019, 293 : 1071 - 1084
  • [26] Affine surfaces with trivial Makar-Limanov invariant
    Daigle, Daniel
    JOURNAL OF ALGEBRA, 2008, 319 (08) : 3100 - 3111
  • [27] CURVES WITH TRIVIAL DUALIZING SHEAF ON ALGEBRAIC-SURFACES
    SAKAI, F
    AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (06) : 1217 - 1231
  • [28] Numerically trivial automorphisms of Enriques surfaces in characteristic 2
    Dolgachev, Igor
    Martin, Gebhard
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2019, 71 (04) : 1181 - 1200
  • [29] Higher syzygies of surfaces with numerically trivial canonical bundle
    Agostini, Daniele
    Kueronya, Alex
    Lozovanu, Victor
    MATHEMATISCHE ZEITSCHRIFT, 2019, 293 (3-4) : 1071 - 1084
  • [30] Compact Kähler Surfaces with Trivial Canonical Bundle
    Nicholas Buchdahl
    Annals of Global Analysis and Geometry, 2003, 23 : 189 - 204