Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells

被引:72
作者
Toghyani, S. [1 ]
Afshari, E. [1 ]
Baniasadi, E. [1 ]
机构
[1] Univ Isfahan, Fac Engn, Dept Mech Engn, Hezar Jerib Ave, Esfahan 8174673441, Iran
关键词
PEM electrolyzer; Metal foam; Flow distributor; Three-dimensional model; CFD modeling; PEM FUEL-CELL; PRESSURE WATER ELECTROLYSIS; CURRENT-DENSITY; HIGH-TEMPERATURE; 2-PHASE FLOW; PERFORMANCE ANALYSIS; TRANSPORT; CHANNELS; SYSTEM; ENERGY;
D O I
10.1016/j.electacta.2018.09.106
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The arrangement of flow field in a proton exchange membrane electrolyzer cell (PEMEC) plays a significant role on distribution of reactants over the active area of electro-catalyst and transfer of products toward the outlet of PEMEC. In this paper, the performance of a PEMEC with metal foam as flow distributer is investigated and compared with two common flow fields. A numerical analysis is conducted based on a three-dimensional model of an electrolyzer with parallel pattern flow field (model A), double path serpentine flow field (model B), parallel flow field and metal foam as a flow distributor (model C), and a simple channel that is filled with metal foam (model D). The performance of four different models are compared to each other in terms of current density, temperature, hydrogen mass fraction and pressure drop distribution. The current density for model A, model B, model C, and model D at voltage of 1.55 V are 0.3, 0.41, 0.43 and 0.44 A/cm(2), respectively. The results indicate that model D has the best performance in comparison with other models in terms of pressure drop and uniformity of hydrogen mass fraction and temperature. There is no significant difference between models B, C, and D in terms of current density, but the pressure drop in the model B, model C and model D are 736, 9.72, and 4.917 kPa, respectively. It is concluded that utilization of metal foams has advantages such as high electrical conductivity and low weight, and an appropriate foam permeability should be selected to optimize the pressure drop. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:506 / 519
页数:14
相关论文
共 50 条
  • [1] Numerical analysis of bubble behavior in proton exchange membrane water electrolyzer flow field with serpentine channel
    Dang, Duy Khang
    Zhou, Biao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 688 - 701
  • [2] Oxygen transport in proton exchange membrane fuel cells with metal foam flow fields
    Suo, Mengshan
    Sun, Kai
    Chen, Rui
    Che, Zhizhao
    Zeng, Zhen
    Li, Qifeng
    Tao, Xingxiao
    Wang, Tianyou
    JOURNAL OF POWER SOURCES, 2022, 521
  • [3] Numerical Analysis of Different Multi-serpentine Flow Fields for Proton Exchange Membrane Fuel Cells
    Liu, H. C.
    Yang, W. M.
    Cheng, L. S.
    Tan, J.
    FUEL CELLS, 2018, 18 (02) : 173 - 180
  • [4] Effect of flow regime of circulating water on a proton exchange membrane electrolyzer
    Ito, H.
    Maeda, T.
    Nakano, A.
    Hasegawa, Y.
    Yokoi, N.
    Hwang, C. M.
    Ishida, M.
    Kato, A.
    Yoshida, T.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (18) : 9550 - 9560
  • [5] Investigation on performance of proton exchange membrane electrolyzer with different flow field structures
    Lin, Rui
    Lu, Ying
    Xu, Ji
    Huo, Jiawei
    Cai, Xin
    APPLIED ENERGY, 2022, 326
  • [6] Prediction of Transient Hydrogen Flow of Proton Exchange Membrane Electrolyzer Using Artificial Neural Network
    Biswas, Mohammad
    Wilberforce, Tabbi
    Biswas, Mohammad A.
    HYDROGEN, 2023, 4 (03): : 542 - 555
  • [7] In situ comparison of water content and dynamics in parallel, single-serpentine, and interdigitated flow fields of polymer electrolyte membrane fuel cells
    Spernjak, Dusan
    Prasad, Ajay K.
    Advani, Suresh G.
    JOURNAL OF POWER SOURCES, 2010, 195 (11) : 3553 - 3568
  • [8] Relationship of local current and two-phase flow in proton exchange membrane electrolyzer cells
    Zhang, Tianying
    Cao, Yanpeng
    Zhang, Yipeng
    Wang, Kaichen
    Xu, Chao
    Ye, Feng
    JOURNAL OF POWER SOURCES, 2022, 542
  • [9] Experimental performance assessment of metal-foam flow fields for proton exchange membrane fuel cells
    Awin, Yussef
    Dukhan, Nihad
    APPLIED ENERGY, 2019, 252
  • [10] A Comparative Investigation of L-Serpentine and Single Serpentine Flow Fields Efficiency in Proton Exchange Membrane Fuel Cells using Computational Fluid Dynamics
    Amarnath, G.
    V. Babu, A.
    Babu, K. G.
    Bhosale, K.
    RENEWABLE ENERGY RESEARCH AND APPLICATIONS, 2024, 5 (02): : 195 - 209