A note on renormalization and black hole entropy in loop quantum gravity

被引:40
作者
Jacobson, Ted [1 ]
机构
[1] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/24/18/N02
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Microscopic state counting for a black hole in loop quantum gravity yields a result proportional to the horizon area, and inversely proportional to Newton's constant and the Immirzi parameter. It is argued here that before this result can be compared to the Bekenstein - Hawking entropy of a macroscopic black hole, the scale dependence of both Newton's constant and the area must be accounted for. The two entropies could then agree for any value of the Immirzi parameter, if a certain renormalization property holds.
引用
收藏
页码:4875 / 4879
页数:5
相关论文
共 19 条
[1]   On area and entropy of a black hole [J].
Alekseev, A ;
Polychronakos, AP ;
Smedbäck, A .
PHYSICS LETTERS B, 2003, 574 (3-4) :296-300
[2]   Quantum horizons and black-hole entropy: inclusion of distortion and rotation [J].
Ashtekar, A ;
Engle, J ;
Van den Broeck, C .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (04) :L27-L34
[3]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[4]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[5]  
Ashtekar A, 2000, ADV THEOR MATH PHYS, V4
[6]  
Corichi A., 2007, Journal of Physics: Conference Series, V68, DOI 10.1088/1742-6596/68/1/012031
[7]   Quantum geometry and microscopic black hole entropy [J].
Corichi, Alejandro ;
Diaz-Polo, Jacobo ;
Fernandez-Borja, Enrique .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (01) :243-251
[8]   Black-hole entropy from quantum geometry [J].
Domagala, M ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (22) :5233-5243
[9]   Symmetry and entropy of black hole horizons [J].
Dreyer, Olaf ;
Markopoulou, Fotini ;
Smolin, Lee .
NUCLEAR PHYSICS B, 2006, 744 (1-2) :1-13
[10]   An improved estimate of black hole entropy in the quantum geometry approach [J].
Ghosh, A ;
Mitra, P .
PHYSICS LETTERS B, 2005, 616 (1-2) :114-117