Exponentially small splitting and Arnold diffusion for multiple time scale systems

被引:3
|
作者
Procesi, M [1 ]
机构
[1] SISSA, Funct Anal Sector, I-34014 Trieste, Italy
关键词
homoclinic splitting; Arnold diffusion; whiskered tori; perturbation theory; diagrammatic expansion;
D O I
10.1142/S0129055X03001655
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the class of Hamiltonians: 1/2 Sigma(j=1)(n-1) I-j(2) + 1/2epsilonI(n)(2) + p(2)/2 + epsilon[(cos q - 1) - b(2)(cos 2q - 1)] + epsilonmuf(q) Sigma(i-1)(n)sin(psi(i)), where 0 less than or equal to b less than or equal to 1/2, and the perturbing function f (q) is a rational function of e(4q). We 2 prove upper and lower bounds on the splitting for such class of systems, in regions of the phase space characterized by one fast frequency. Finally using an appropriate Normal Form theorem we prove the existence of chains of heteroclinic intersections.
引用
收藏
页码:339 / 386
页数:48
相关论文
共 21 条
  • [21] Instability of high dimensional Hamiltonian systems: Multiple resonances do not impede diffusion
    Delshams, Axnadeu
    de la Llave, Rafael
    Seara, Tere M.
    ADVANCES IN MATHEMATICS, 2016, 294 : 689 - 755