Theoretical Insights into the Selective Oxidation of Methane to Methanol in Copper-Exchanged Mordenite

被引:147
作者
Zhao, Zhi-Jian [1 ,2 ,3 ]
Kulkarni, Ambarish [1 ,2 ]
Vilella, Laia [1 ,2 ,4 ]
Norskov, Jens K. [1 ,2 ]
Studt, Felix [1 ,2 ,5 ]
机构
[1] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin 300072, Peoples R China
[4] Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain
[5] Karlsruhe Inst Technol, Inst Catalysis Res & Technol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
methane activation; density functional theory; zeolite; mordenite; copper; methanol; ELECTRONIC-STRUCTURE; ACTIVE-SITE; CONVERSION; CU-ZSM-5; REACTIVITY; ZEOLITES; GAS; COORDINATION; TRANSITION; ADSORPTION;
D O I
10.1021/acscatal.6b00440
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selective oxidation of methane to methanol is one of the most difficult chemical processes to perform. A potential group of catalysts to achieve CH4 partial oxidation are Cu-exchanged zeolites mimicking the active structure of the enzyme methane monooxygenase. However, the details of this conversion, including the structure of the active site, are still under debate. In this contribution, periodic density functional theory (DFT) methods were employed to explore the molecular features of the selective oxidation of methane to methanol catalyzed by Cu-exchanged mordenite (Cu-MOR). We focused on two types of previously suggested active species, CuOCu and CuOOCu. Our calculations indicate that the formation of CuOCu is more feasible than that of CuOOCu. In addition, a much lower C-H dissociation barrier is located on the former active site, indicating that C H bond activation is easily achieved with CuOCu. We calculated the energy barriers of all elementary steps for the entire process, including catalyst activation, CH4 activation, and CH3OH desorption. Our calculations are in agreement with experimental observations and present the first theoretical study examining the entire process of selective oxidation of methane to methanol.
引用
收藏
页码:3760 / 3766
页数:7
相关论文
共 48 条
[1]   Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation [J].
Alayon, Evalyn Mae C. ;
Nachtegaal, Maarten ;
Bodi, Andras ;
Ranocchiari, Marco ;
van Bokhoven, Jeroen A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (12) :7681-7693
[2]   Reaction Conditions of Methane-to-Methanol Conversion Affect the Structure of Active Copper Sites [J].
Alayon, Evalyn Mae C. ;
Nachtegaal, Maarten ;
Bodi, Andras ;
van Bokhoven, Jeroen A. .
ACS CATALYSIS, 2014, 4 (01) :16-22
[3]  
Baerlocher Ch., Database of zeolite structures
[4]   Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase [J].
Balasubramanian, Ramakrishnan ;
Rosenzweig, Amy C. .
ACCOUNTS OF CHEMICAL RESEARCH, 2007, 40 (07) :573-580
[5]   Oxidation of methane by a biological dicopper centre [J].
Balasubramanian, Ramakrishnan ;
Smith, Stephen M. ;
Rawat, Swati ;
Yatsunyk, Liliya A. ;
Stemmler, Timothy L. ;
Rosenzweig, Amy C. .
NATURE, 2010, 465 (7294) :115-U131
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges [J].
Bordeaux, Melanie ;
Galarneau, Anne ;
Drone, Jullien .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (43) :10712-10723
[8]   Revisiting the nature of Cu sites in the activated Cu-SSZ-13 catalyst for SCR reaction [J].
Borfecchia, E. ;
Lomachenko, K. A. ;
Giordanino, F. ;
Falsig, H. ;
Beato, P. ;
Soldatov, A. V. ;
Bordiga, S. ;
Lamberti, C. .
CHEMICAL SCIENCE, 2015, 6 (01) :548-563
[9]   Methanol-Alkene Reactions in Zeotype Acid Catalysts: Insights from a Descriptor-Based Approach and Microkinetic Modeling [J].
Brogaard, Rasmus Y. ;
Wang, Chuan-Ming ;
Studt, Felix .
ACS CATALYSIS, 2014, 4 (12) :4504-4509
[10]   Methanol-to-hydrocarbons conversion: The alkene methylation pathway [J].
Brogaard, Rasmus Y. ;
Henry, Reynald ;
Schuurman, Yves ;
Medford, Andrew J. ;
Moses, Poul Georg ;
Beato, Pablo ;
Svelle, Stian ;
Norskov, Jens K. ;
Olsbye, Unni .
JOURNAL OF CATALYSIS, 2014, 314 :159-169