The recent generative model-driven Generalized Zero-shot Learning (GZSL) techniques overcome the prevailing issue of the model bias towards the seen classes by synthesizing the visual samples of the unseen classes through leveraging the corresponding semantic prototypes. Although such approaches significantly improve the GZSL performance due to data augmentation, they violate the principal assumption of GZSL regarding the unavailability of semantic information of unseen classes during training. In this work, we propose to use a generative model (GAN) for synthesizing the visual proxy samples while strictly adhering to the standard assumptions of the GZSL. The aforementioned proxy samples are generated by exploring the early training regime of the GAN. We hypothesize that such proxy samples can effectively be used to characterize the average entropy of the label distribution of the samples from the unseen classes. Further, we train a classifier on the visual samples from the seen classes and proxy samples using entropy separation criterion such that an average entropy of the label distribution is low and high, respectively, for the visual samples from the seen classes and the proxy samples. Such entropy separation criterion generalizes well during testing where the samples from the unseen classes exhibit higher entropy than the entropy of the samples from the seen classes. Subsequently, low and high entropy samples are classified using supervised learning and ZSL rather than GZSL. We show the superiority of the proposed method by experimenting on AWA1, CUB, HMDB51, and UCF101 datasets.
机构:
Hong Kong Baptist Univ, Dept Comp Sci, Beijing Normal Univ, United Int Coll, Zhuhai, Guangdong, Peoples R China
Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R ChinaHong Kong Baptist Univ, Dept Comp Sci, Beijing Normal Univ, United Int Coll, Zhuhai, Guangdong, Peoples R China
Fan, Wentao
Liang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R ChinaHong Kong Baptist Univ, Dept Comp Sci, Beijing Normal Univ, United Int Coll, Zhuhai, Guangdong, Peoples R China
Liang, Chen
Wang, Tian
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, UIC Inst Artificial Intelligence & Future Network, Beijing, Peoples R China
BNU, Guangdong Key Lab & Multi Modal Data Proc, United Int Coll, HKBU, Zhuhai, Guangdong, Peoples R ChinaHong Kong Baptist Univ, Dept Comp Sci, Beijing Normal Univ, United Int Coll, Zhuhai, Guangdong, Peoples R China
机构:
Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R ChinaChinese Acad Sci, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
Gao, Mengyu
Dong, Qiulei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R ChinaChinese Acad Sci, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
机构:
West Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Zhang, Zeqing
Li, Xiaofan
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Li, Xiaofan
Ma, Tai
论文数: 0引用数: 0
h-index: 0
机构:
West Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Ma, Tai
Gao, Zuodong
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Gao, Zuodong
Li, Cuihua
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
Li, Cuihua
Lin, Weiwei
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Polytech Normal Univ, Sch Big Data & Artificial Intelligence, Fuqing 350300, Peoples R ChinaWest Yunnan Univ Appl Sci, Sch Earth Sci & Engn, Dali 671000, Peoples R China
机构:
Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
Wu, Yao
Kong, Xia
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
Kong, Xia
Xie, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
EastChina Normal Univ, Sch Comp Sci & Technol, Shanghai 200062, Peoples R China
East China Normal Univ, Chongqing Inst, Chongqing 401120, Peoples R ChinaXiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
Xie, Yuan
Qu, Yanyun
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Informat, Xiamen 361005, Peoples R China