Generalized Zero-Shot Learning using Generated Proxy Unseen Samples and Entropy Separation

被引:9
作者
Gune, Omkar [1 ]
Banerjee, Biplab [1 ]
Chaudhuri, Subhasis [1 ]
Cuzzolin, Fabio [2 ]
机构
[1] Indian Inst Technol, Mumbai, Maharashtra, India
[2] Oxford Brookes Univ, Oxford, England
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
关键词
Generalized zero-shot learning; generative models;
D O I
10.1145/3394171.3413657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent generative model-driven Generalized Zero-shot Learning (GZSL) techniques overcome the prevailing issue of the model bias towards the seen classes by synthesizing the visual samples of the unseen classes through leveraging the corresponding semantic prototypes. Although such approaches significantly improve the GZSL performance due to data augmentation, they violate the principal assumption of GZSL regarding the unavailability of semantic information of unseen classes during training. In this work, we propose to use a generative model (GAN) for synthesizing the visual proxy samples while strictly adhering to the standard assumptions of the GZSL. The aforementioned proxy samples are generated by exploring the early training regime of the GAN. We hypothesize that such proxy samples can effectively be used to characterize the average entropy of the label distribution of the samples from the unseen classes. Further, we train a classifier on the visual samples from the seen classes and proxy samples using entropy separation criterion such that an average entropy of the label distribution is low and high, respectively, for the visual samples from the seen classes and the proxy samples. Such entropy separation criterion generalizes well during testing where the samples from the unseen classes exhibit higher entropy than the entropy of the samples from the seen classes. Subsequently, low and high entropy samples are classified using supervised learning and ZSL rather than GZSL. We show the superiority of the proposed method by experimenting on AWA1, CUB, HMDB51, and UCF101 datasets.
引用
收藏
页码:4262 / 4270
页数:9
相关论文
共 50 条
  • [21] Learning Multiple Criteria Calibration for Generalized Zero-shot Learning
    Lu, Ziqian
    Lu, Zhe-Ming
    Yu, Yunlong
    He, Zewei
    Luo, Hao
    Zheng, Yangming
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [22] Learning discriminative and representative feature with cascade GAN for generalized zero-shot learning
    Liu, Jingren
    Fu, Liyong
    Zhang, Haofeng
    Ye, Qiaolin
    Yang, Wankou
    Liu, Li
    KNOWLEDGE-BASED SYSTEMS, 2022, 236
  • [23] A Dual Discriminator Method for Generalized Zero-Shot Learning
    Wei, Tianshu
    Huang, Jinjie
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (01): : 1599 - 1612
  • [24] Bidirectional Mapping Coupled GAN for Generalized Zero-Shot Learning
    Shermin, Tasfia
    Teng, Shyh Wei
    Sohel, Ferdous
    Murshed, Manzur
    Lu, Guojun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 721 - 733
  • [25] Dual Prototype Contrastive Network for Generalized Zero-Shot Learning
    Jiang, Huajie
    Li, Zhengxian
    Hu, Yongli
    Yin, Baocai
    Yang, Jian
    van den Hengel, Anton
    Yang, Ming-Hsuan
    Qi, Yuankai
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1111 - 1122
  • [26] Cooperative Coupled Generative Networks for Generalized Zero-Shot Learning
    Sun, Liang
    Song, Junjie
    Wang, Ye
    Li, Baoyu
    IEEE ACCESS, 2020, 8 : 119287 - 119299
  • [27] ROBUST BIDIRECTIONAL GENERATIVE NETWORK FOR GENERALIZED ZERO-SHOT LEARNING
    Xing, Yun
    Huang, Sheng
    Huangfu, Luwen
    Chen, Feiyu
    Ge, Yongxin
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [28] Contrastive visual feature filtering for generalized zero-shot learning
    Meng, Shixuan
    Jiang, Rongxin
    Tian, Xiang
    Zhou, Fan
    Chen, Yaowu
    Liu, Junjie
    Shen, Chen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [29] Triple Loss Based Framework for Generalized Zero-Shot Learning
    Shen, Yaying
    Li, Qun
    Xu, Ding
    Zhang, Ziyi
    Yang, Rui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (04) : 832 - 835
  • [30] Mitigating Generation Shi!s for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Wang, Sen
    Qiu, Ruihong
    Li, Jingjing
    Huang, Zi
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 844 - 852