Generalized Zero-Shot Learning using Generated Proxy Unseen Samples and Entropy Separation

被引:9
作者
Gune, Omkar [1 ]
Banerjee, Biplab [1 ]
Chaudhuri, Subhasis [1 ]
Cuzzolin, Fabio [2 ]
机构
[1] Indian Inst Technol, Mumbai, Maharashtra, India
[2] Oxford Brookes Univ, Oxford, England
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
关键词
Generalized zero-shot learning; generative models;
D O I
10.1145/3394171.3413657
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recent generative model-driven Generalized Zero-shot Learning (GZSL) techniques overcome the prevailing issue of the model bias towards the seen classes by synthesizing the visual samples of the unseen classes through leveraging the corresponding semantic prototypes. Although such approaches significantly improve the GZSL performance due to data augmentation, they violate the principal assumption of GZSL regarding the unavailability of semantic information of unseen classes during training. In this work, we propose to use a generative model (GAN) for synthesizing the visual proxy samples while strictly adhering to the standard assumptions of the GZSL. The aforementioned proxy samples are generated by exploring the early training regime of the GAN. We hypothesize that such proxy samples can effectively be used to characterize the average entropy of the label distribution of the samples from the unseen classes. Further, we train a classifier on the visual samples from the seen classes and proxy samples using entropy separation criterion such that an average entropy of the label distribution is low and high, respectively, for the visual samples from the seen classes and the proxy samples. Such entropy separation criterion generalizes well during testing where the samples from the unseen classes exhibit higher entropy than the entropy of the samples from the seen classes. Subsequently, low and high entropy samples are classified using supervised learning and ZSL rather than GZSL. We show the superiority of the proposed method by experimenting on AWA1, CUB, HMDB51, and UCF101 datasets.
引用
收藏
页码:4262 / 4270
页数:9
相关论文
共 50 条
  • [1] Generalized zero-shot learning for classifying unseen wafer map patterns
    Kim, Han Kyul
    Shim, Jaewoong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [2] Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning
    Chen, Zhi
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    DATABASES THEORY AND APPLICATIONS (ADC 2021), 2021, 12610 : 139 - 151
  • [3] Unseen image generating domain-free networks for generalized zero-shot learning
    Kim, Hoseong
    Lee, Jewook
    Byun, Hyeran
    NEUROCOMPUTING, 2020, 411 (411) : 67 - 77
  • [4] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [5] GENERALIZED ZERO-SHOT LEARNING USING CONDITIONAL WASSERSTEIN AUTOENCODER
    Kim, Junhan
    Shim, Byonghyo
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3413 - 3417
  • [6] Generalized Zero-Shot Learning using Identifiable Variational Autoencoders
    Gull, Muqaddas
    Arif, Omar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191
  • [7] Model Selection for Generalized Zero-Shot Learning
    Zhang, Hongguang
    Koniusz, Piotr
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 198 - 204
  • [8] Dual insurance for generalized zero-shot learning
    Liang, Jiahao
    Fang, Xiaozhao
    Kang, Peipei
    Han, Na
    Li, Chuang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025, 16 (03) : 2111 - 2125
  • [9] Learning the Compositional Domains for Generalized Zero-shot Learning
    Dong, Hanze
    Fu, Yanwei
    Hwang, Sung Ju
    Sigal, Leonid
    Xue, Xiangyang
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 221
  • [10] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070