Smoothed nodal forces for improved dynamic crack propagation modeling in XFEM

被引:43
作者
Menouillard, Thomas [1 ]
Belytschko, Ted [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
关键词
dynamic; crack propagation; XFEM; extended finite element method; discontinuity; explicit; FINITE-ELEMENT-METHOD; FREE GALERKIN METHODS; COHESIVE CRACKS; X-FEM; GROWTH; FRACTURE; TIP; DISCONTINUITIES; SIMULATIONS; ENRICHMENT;
D O I
10.1002/nme.2882
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Improvements in numerical aspects of dynamic crack propagation procedures by the extended finite element method are described and studied. Using only the discontinuous enrichment function in XFEM gives a binary description of the crack tip element: it is either cut or not. We describe a correction force to modify the forces to smoothly release the tip element while the crack tip travels through the element. This avoids creating spurious stress waves and improves the accuracy of the stress intensity factors during propagation by decreasing the oscillations. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:47 / 72
页数:26
相关论文
共 61 条
[1]  
ABERSON JA, 1973, TMX2893 NASA LANGL R, P531
[2]  
Barenblatt GI, 1962, Adv Appl Mech, V7, P55, DOI [10.1016/S0065-2156(08)70121-2, DOI 10.1016/S0065-2156(08)70121-2]
[3]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[4]  
2-S
[5]  
Belytschko T, 1998, INT J NUMER METH ENG, V43, P785, DOI 10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO
[6]  
2-9
[7]  
Belytschko T, 1996, INT J NUMER METH ENG, V39, P923, DOI 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO
[8]  
2-W
[9]  
Belytschko T, 2001, INT J NUMER METH ENG, V50, P993, DOI 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO
[10]  
2-M