Estimating multivariate density and its derivatives for mixed measurement error data

被引:1
作者
Guo, Linruo [1 ]
Song, Weixing [1 ]
Shi, Jianhong [2 ]
机构
[1] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[2] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041000, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Classical and deconvolution kernel; Convergence rate; Measurement error; Ordinary and super smooth; ASYMPTOTIC NORMALITY; REGRESSION ESTIMATION; OPTIMAL RATES; DECONVOLUTION; CONVERGENCE; BERKSON; MIXTURE;
D O I
10.1016/j.jmva.2022.105005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we propose a nonparametric mixed kernel estimator for a multivariate density function and its derivatives when the data are contaminated with different sources of measurement errors. The proposed estimator is a mixture of the classical and the deconvolution kernels, accounting for the error-free and error-prone variables, respectively. Large sample properties of the proposed nonparametric estimator, includ-ing the order of the mean squares error, the consistency, and the asymptotic normality, are thoroughly investigated. The optimal convergence rates among all nonparametric estimators for different measurement error structures are derived, and it is shown that the proposed mixed kernel estimators achieve the optimal convergence rate. A simulation study is conducted to evaluate the finite sample performance of the proposed estimators. (C) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Well-posedness of measurement error models for self-reported data
    An, Yonghong
    Hu, Yingyao
    JOURNAL OF ECONOMETRICS, 2012, 168 (02) : 259 - 269
  • [32] Effect of measurement error on monitoring multivariate process variability
    Huwang, Longeheen
    Hung, Ying
    STATISTICA SINICA, 2007, 17 (02) : 749 - 760
  • [33] The effect of correlated measurement error in multivariate models of diet
    Michels, KB
    Bingham, SA
    Luben, R
    Welch, AA
    Day, NE
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2004, 160 (01) : 59 - 67
  • [34] Restricted estimation in multivariate measurement error regression model
    Jain, Kanchan
    Singh, Sukhbir
    Sharma, Suresh
    JOURNAL OF MULTIVARIATE ANALYSIS, 2011, 102 (02) : 264 - 280
  • [35] Density estimation and regression analysis on hyperspheres in the presence of measurement error
    Jeon, Jeong Min
    Van Keilegom, Ingrid
    SCANDINAVIAN JOURNAL OF STATISTICS, 2024, 51 (02) : 513 - 556
  • [36] Analysis of longitudinal data with covariate measurement error and missing responses: An improved unbiased estimating equation
    Lin, Huiming
    Qin, Guoyou
    Zhang, Jiajia
    Zhu, Zhongyi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 121 : 104 - 112
  • [37] Density estimation in the presence of heteroscedastic measurement error of unknown type using phase function deconvolution
    Nghiem, Linh
    Potgieter, Cornelis J.
    STATISTICS IN MEDICINE, 2018, 37 (25) : 3679 - 3692
  • [38] Estimating density dependence, process noise, and observation error
    Dennis, Brian
    Ponciano, Jose Miguel
    Lele, Subhash R.
    Taper, Mark L.
    Staples, David F.
    ECOLOGICAL MONOGRAPHS, 2006, 76 (03) : 323 - 341
  • [39] Sensory profile average data: combining mixed model ANOVA with measurement error methodology
    Brockhoff, PB
    FOOD QUALITY AND PREFERENCE, 2001, 12 (5-7) : 413 - 426
  • [40] ESTIMATING SURVEY QUESTIONNAIRE PROFILES FOR MEASUREMENT ERROR RISK
    Schouten, Barry
    Bais, Frank
    Toepoel, Vera
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2018, 6 (03) : 306 - 334