Taylor expansion based fast multipole method for 3-D Helmholtz equations in layered media

被引:11
作者
Wang, Bo [1 ,2 ]
Chen, Duan [3 ]
Zhang, Bo [4 ]
Zhang, Wenzhong [2 ]
Cho, Min Hyung [5 ]
Cai, Wei [2 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha 410081, Hunan, Peoples R China
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
[3] Univ North Carolina Charlotte, Dept Math & Stat, Charlotte, NC 28223 USA
[4] Indiana Univ, Dept Comp Sci, Bloomington, IN 47408 USA
[5] Univ Massachusetts, Dept Math Sci, Lowell, MA 01854 USA
基金
美国国家科学基金会;
关键词
Fast multipole method; Layered media; Helmholtz equation; Taylor expansion; ELECTROMAGNETIC SCATTERING; INTEGRAL-EQUATION; GREENS-FUNCTIONS; SOUND-PROPAGATION; FAST ALGORITHM; SOLVER; COMPUTATION; ACCURATE; SYSTEM;
D O I
10.1016/j.jcp.2019.109008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop a Taylor expansion (TE) based fast multipole method (FMM) for low frequency 3D Helmholtz Green's function in layered media. Two forms of Taylor expansions, with either non-symmetric or symmetric derivatives of layered media Green's functions, are used for the implementations of the proposed TE-FMM. In the implementation with non-symmetric derivatives, an algorithm based on discrete complex image approximations and recurrence formulas is shown to be very efficient and accurate in computing the high order derivatives. Meanwhile, the implementation based on symmetric derivatives is more robust and pre-computed tables for the high order derivatives in translation operators are used. Numerical tests in layered media have validated the accuracy and O(N) complexity of the proposed algorithms. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 39 条
[11]   A CLOSED-FORM SPATIAL GREENS-FUNCTION FOR THE THICK MICROSTRIP SUBSTRATE [J].
CHOW, YL ;
YANG, JJ ;
FANG, DG ;
HOWARD, GE .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (03) :588-592
[12]   Efficient fast multipole method for low-frequency scattering [J].
Darve, E ;
Havé, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 197 (01) :341-363
[13]   DASHMM: Dynamic Adaptive System for Hierarchical Multipole Methods [J].
DeBuhr, J. ;
Zhang, B. ;
Tsueda, A. ;
Tilstra-Smith, V. ;
Sterling, T. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (04) :1106-1126
[14]   DISCRETE IMAGE THEORY FOR HORIZONTAL ELECTRIC DIPOLES IN A MULTILAYERED MEDIUM [J].
FANG, DG ;
YANG, JJ ;
DELISLE, GY .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1988, 135 (05) :297-303
[15]   The black-box fast multipole method [J].
Fong, William ;
Darve, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (23) :8712-8725
[16]   Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space [J].
Geng, N ;
Sullivan, A ;
Carin, L .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (05) :740-748
[17]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[18]  
Greengard L., 1997, Acta Numerica, V6, P229, DOI 10.1017/S0962492900002725
[19]   Electromagnetic scattering solution of conducting strips in layered media using the fast multipole method [J].
Gurel, L ;
Aksun, MI .
IEEE MICROWAVE AND GUIDED WAVE LETTERS, 1996, 6 (08) :277-279
[20]   Fast inhomogeneous plane wave algorithm for electromagnetic solutions in layered medium structures: Two-dimensional case [J].
Hu, B ;
Chew, WC .
RADIO SCIENCE, 2000, 35 (01) :31-43