Bisimulations for a calculus of broadcasting systems

被引:15
作者
Hennessy, M [1 ]
Rathke, J [1 ]
机构
[1] Univ Sussex, Dept Cognit & Comp Sci, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
broadcasting; bisimulation; barbed equivalence; verification; proof systems;
D O I
10.1016/S0304-3975(97)00261-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a theory of bisimulation equivalence for the broadcast calculus CBS. Both the strong and weak versions of bisimulation congruence we study are justified in terms of a characterisation as the largest CBS congruences contained in an appropriate version of barbed bisimulation. We then present sound and complete proof systems for both the strong and weak congruences over finite terms. The first system we give contains an infinitary proof rule to accommodate input prefixes. We improve on this by presenting a finitary proof system where judgements are relative to properties of the data domain. (C) 1998-Elsevier Science B.V. All rights reserved.
引用
收藏
页码:225 / 260
页数:36
相关论文
共 19 条
[1]  
Amadio R., 1996, LNCS, V1119, P147
[2]  
GROOTE JF, 1990, CSR9076 CWI
[3]   SYMBOLIC BISIMULATIONS [J].
HENNESSY, M ;
LIN, H .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (02) :353-389
[4]  
Hennessy M., 1991, Formal Aspects of Computing, V3, P346, DOI 10.1007/BF01642508
[5]  
HENNESSY M, 1993, LECT NOTES COMPUTER, V715, P202
[6]  
HENNESSY M, 1995, 195 U SUSS
[7]  
HENNESSY M, 1995, 395 U SUSS
[8]  
HENNESSY M, 1993, J FORMAL ASPECTS COM, V5, P432
[9]  
Hennessy Matthew C. B., 1980, LECTURE NOTES COMPUT, V88, p[261, 1], DOI DOI 10.1007/BFB0022510
[10]  
LEE I, 1995, LECT NTOES COMPUTER, V962