Oxygen permeability, thermal expansion and stability of SrCo0.8Fe0.2O3-δ-SrAl2O4 Composites

被引:35
作者
Yaremchenko, A. A.
Kharton, V. V. [1 ]
Avdeev, M.
Shaula, A. L.
Marques, F. M. B.
机构
[1] Univ Aveiro, CICECO, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal
[2] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia
关键词
ceramic membrane; mixed conductor; perovskite; composite; oxygen permeability; thermal expansion; stability;
D O I
10.1016/j.ssi.2007.05.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additions of SrAl2O4 phase to mixed-conducting SrCo0.8Fe0.2O3-delta promote oxygen-vacancy ordering and brownmillerite formation at temperatures below 1050 K due to Al3+ incorporation, but also decrease thermal expansion coefficients (TECs) and improve thermal shock stability. The (SrCo0.8Fe0.2O3-delta SrAl2O4)-Sr-_ composite membranes exhibit also a relatively high stability with respect to interaction with CO, due to A-site deficiency of the perovskite-related phase, caused by partial SrAl2O4 dissolution. The oxygen permeability and electronic conductivity of (SrCo0.8 Fe0.2O3-delta)(1-x)(SrAl2O4)(x) (x=0.3-0.7) composites are determined by the perovskite component and decrease with increasing x. Despite minor diffusion of the transition metal cations into SrAl2O4, hexagonal above 940 K and monoclinic in the low-temperature range, this phase has insulating properties. Nonetheless, at x=0.3 the oxygen permeation fluxes at 1073-1173 are similar to those through single-phase SrCo0.8Fe0.2O3-delta membranes. The average TECs of the composite materials, calculated from dilatometric data in air, vary in the ranges (10.0-11.3) x 10(-6)K(-1) at 300-900 K and (14.7-21.1) x 10(-6) K-1 at 900-1100 K. The low-p(O-2) stability limit and electronic transport properties of SrCo0.8Fe0.2O3-delta are briefly discussed. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1205 / 1217
页数:13
相关论文
共 44 条
[1]   THE CRYSTAL AND MAGNETIC-STRUCTURES OF SR2COFEO5 [J].
BATTLE, PD ;
GIBB, TC ;
LIGHTFOOT, P .
JOURNAL OF SOLID STATE CHEMISTRY, 1988, 76 (02) :334-339
[2]  
Bouwmeester H.J.M., 1996, Membrane Science and Technology, V4, P435
[3]  
Carolan M.F., 1998, Patent, Patent No. [US5712220 A, 5712220]
[4]   GLYCINE NITRATE COMBUSTION SYNTHESIS OF OXIDE CERAMIC POWDERS [J].
CHICK, LA ;
PEDERSON, LR ;
MAUPIN, GD ;
BATES, JL ;
THOMAS, LE ;
EXARHOS, GJ .
MATERIALS LETTERS, 1990, 10 (1-2) :6-12
[5]   Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13:: atomic-scale studies of defects and ion migration [J].
Fisher, CAJ ;
Islam, MS .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (31) :3200-3207
[6]  
GOODENOUGH JB, 1971, CONDUCTION LOW MOBIL, P87
[7]   Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3-δ [J].
Grunbaum, N ;
Mogni, L ;
Prado, F ;
Caneiro, A .
JOURNAL OF SOLID STATE CHEMISTRY, 2004, 177 (07) :2350-2357
[8]   A NEUTRON-DIFFRACTION STUDY OF 2 STRONTIUM COBALT IRON-OXIDES [J].
HARRISON, WTA ;
LEE, TH ;
YANG, YL ;
SCARFE, DP ;
LIU, LM ;
JACOBSON, AJ .
MATERIALS RESEARCH BULLETIN, 1995, 30 (05) :621-630
[9]   Defects And Transport In SrFe1-xCOxO3-δ [J].
Holt, A. ;
Norby, T. ;
Glenne, R. .
IONICS, 1999, 5 (5-6) :434-443
[10]   PHASE-TRANSITION IN SRAL2O4 [J].
ITO, S ;
BANNO, S ;
SUZUKI, K ;
INAGAKI, M .
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-FRANKFURT, 1977, 105 (3-4) :173-178