Waveform Classification in Radar-Communications Coexistence Scenarios

被引:10
作者
Kong, Gyuyeol [1 ]
Jung, Minchae [2 ]
Koivunen, Visa [1 ]
机构
[1] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[2] Virginia Tech, Wireless VT, Dept Elect & Comp Engn, Blacksburg, VA USA
来源
2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM) | 2020年
关键词
Signal intelligence; waveform recognition; Fourier synchrosqueezing transform; independent component analysis; convolutional neural network;
D O I
10.1109/GLOBECOM42002.2020.9322442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the problem of recognizing waveform and modulation is addressed in radar-communications coexistence and shared spectrum scenarios. We propose a deep learning method for waveform classification. A hierarchical recognition approach is employed. The received complex-valued signal is first classified to single carrier radar, communication or multicarrier waveforms. Fourier synchrosqueezing transformation (FSST) time-frequency representation is computed and used as an input to a convolutional neural network (CNN). For multicarrier signals, key waveform parameters induding the cyclic prefix (CP) duration, number of subcarriers and subcarrier spacing are estimated. The modulation type used for subcarriers is recognized. Independent component analysis (ICA) is used to enforce independence of I- and Q-components, and consequently significantly improving the classification performance. Simulation results demonstrate the high classification performance of the proposed method even for orthogonal frequency division multiplexing (OFDM) signals with high-order quadrature amplitude modulation (QAM).
引用
收藏
页数:6
相关论文
共 18 条
  • [1] 5G Technology: Towards Dynamic Spectrum Sharing Using Cognitive Radio Networks
    Ahmad, W. S. H. M. W.
    Radzi, N. A. M.
    Samidi, F. S.
    Ismail, A.
    Abdullah, F.
    Jamaludin, M. Z.
    Zakaria, M. N.
    [J]. IEEE ACCESS, 2020, 8 : 14460 - 14488
  • [2] Alternative Derivation of FastICA With Novel Power Iteration Algorithm
    Basiri, Shahab
    Ollila, Esa
    Koivunen, Visa
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (09) : 1378 - 1382
  • [3] Theoretical analysis of the second-order synchrosqueezing transform
    Behera, Ratikanta
    Meignen, Sylvain
    Oberlin, Thomas
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, 45 (02) : 379 - 404
  • [4] A blind source separation technique using second-order statistics
    Belouchrani, A
    AbedMeraim, K
    Cardoso, JF
    Moulines, E
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 434 - 444
  • [5] Ericsson Rohde, 2007, 3GPP TSG RAN WG4 M 4
  • [6] Fast and robust fixed-point algorithms for independent component analysis
    Hyvärinen, A
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03): : 626 - 634
  • [7] Kingma DP., 2017, A method for stochastic optimization, DOI DOI 10.48550/ARXIV.1412.6980
  • [8] Kong G, 2020, 2020 IEEE INTERNATIONAL RADAR CONFERENCE (RADAR), P612, DOI [10.1109/RADAR42522.2020.9114783, 10.1109/radar42522.2020.9114783]
  • [9] Kong G, 2019, 2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), P664, DOI [10.1109/CAMSAP45676.2019.9022525, 10.1109/camsap45676.2019.9022525]
  • [10] Automatic LPI Radar Wave form Recognition Using CNN
    Kong, Seung-Hyun
    Kim, Minjun
    Linh Manh Hoang
    Kim, Eunhui
    [J]. IEEE ACCESS, 2018, 6 : 4207 - 4219