A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms

被引:119
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Photon, Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Polymer nanocomposites(PNCs); Machine learning; Multiscale modeling; Thermal conductivity; Stochastic modeling; ARTIFICIAL NEURAL-NETWORK; CARBON NANOTUBES; FINITE-ELEMENT; OPTIMIZATION; COMPOSITES; RESISTANCE; ENERGY;
D O I
10.1016/j.compstruct.2021.114269
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a hybrid machine learning method to predict the thermal conductivity of polymeric nanocomposites (PNCs). Therefore, a combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. We select the thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks.
引用
收藏
页数:14
相关论文
共 50 条
[41]   Harnessing machine learning for high-throughput screening of high thermal conductivity polyimides: A multiscale feature engineering approach [J].
Han, Jiale ;
Ying, Chunhua ;
Cao, Yue ;
Li, Wen ;
Feng, Yuan ;
Mortazavi, Masood ;
Wu, Pingfan ;
Peng, Liang ;
Wang, Jiechen .
NEXT MATERIALS, 2025, 6
[42]   Crop mapping through a hybrid machine learning and deep learning method [J].
Asadi, Bahar ;
Shamsoddini, Ali .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 33
[43]   Prediction of soil thermal conductivity using individual and ensemble machine learning models [J].
Wang, Caijin ;
Wu, Meng ;
Cai, Guojun ;
He, Huan ;
Zhao, Zening ;
Chang, Jianxin .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2024, 149 (11) :5415-5432
[44]   Hybrid uncertain buckling analysis for engineering structures through machine learning method [J].
Liu, Zhanpeng ;
Wang, Qihan ;
Fatahi, Behzad ;
Khabbaz, Hadi ;
Sheng, Daichao ;
Wu, Di .
ENGINEERING STRUCTURES, 2024, 310
[45]   Machine learning-driven interfacial characterization and dielectric breakdown prediction in polymer nanocomposites [J].
Wang, Qi ;
He, Wanxin ;
Deng, Yuheng ;
Zhang, Yue ;
Chern, Wen Kwang ;
Lv, Zepeng ;
Chen, Zhong .
COMPOSITES PART B-ENGINEERING, 2025, 296
[46]   Study on Thermal Conductivity Prediction of Granites Using Data Augmentation and Machine Learning [J].
Ma, Yongjie ;
Tian, Lin ;
Hu, Fuhang ;
Wang, Jingyong ;
Yan, Echuan ;
Zhang, Yanjun .
ENERGIES, 2025, 18 (15)
[47]   Building thermal load prediction through shallow machine learning and deep learning [J].
Wang, Zhe ;
Hong, Tianzhen ;
Piette, Mary Ann .
APPLIED ENERGY, 2020, 263
[48]   Prediction of Porosity in Atmospheric Plasma Sprayed Thermal Barrier Coatings Using Terahertz Pulse and Hybrid Machine Learning Algorithms [J].
Liu, Longhai ;
Li, Rui ;
Ye, Dongdong ;
Yao, Jianquan .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (10) :5104-5111
[49]   Efficient hybrid machine learning model for inverse design of porous boron nitride with high thermal conductivity [J].
Khajeh, Salman ;
Mayelifartash, Arian ;
Ranjbar, Ahmad ;
Abdol, Mohammad Ali ;
Sadeghzadeh, Sadegh ;
Cuniberti, Gianaurelio ;
Kuehne, Thomas D. ;
Kaveh, Hadi .
SOLID STATE COMMUNICATIONS, 2025, 404
[50]   Robust hybrid machine learning algorithms for gas flow rates prediction through wellhead chokes in gas condensate fields [J].
Abad, Abouzar Rajabi Behesht ;
Ghorbani, Hamzeh ;
Mohamadian, Nima ;
Davoodi, Shadfar ;
Mehrad, Mohammad ;
Aghdam, Saeed Khezerloo-ye ;
Nasriani, Hamid Reza .
FUEL, 2022, 308