A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms

被引:111
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Photon, Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Polymer nanocomposites(PNCs); Machine learning; Multiscale modeling; Thermal conductivity; Stochastic modeling; ARTIFICIAL NEURAL-NETWORK; CARBON NANOTUBES; FINITE-ELEMENT; OPTIMIZATION; COMPOSITES; RESISTANCE; ENERGY;
D O I
10.1016/j.compstruct.2021.114269
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a hybrid machine learning method to predict the thermal conductivity of polymeric nanocomposites (PNCs). Therefore, a combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. We select the thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks.
引用
收藏
页数:14
相关论文
共 50 条
[31]   Modification of thermal and electrical characteristics of hybrid polymer nanocomposites through gamma irradiation for advanced applications [J].
Kavitha, C. M. ;
Eshwarappa, K. M. ;
Shetty, Shivakumar Jagadish ;
Gurumurthy, S. C. ;
Surabhi, Srivathsava ;
Prabhu, T. Niranjana ;
Jeong, Jong-Ryul ;
Morales, D. V. .
DISCOVER NANO, 2024, 19 (01)
[32]   Designing hybrid intelligence based recommendation algorithms: An experience through machine learning metaphor [J].
Roy A. .
Informatica (Slovenia), 2020, 44 (03) :401-402
[33]   Designing Hybrid Intelligence Based Recommendation Algorithms: An Experience Through Machine Learning Metaphor [J].
Roy, Arup .
INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2020, 44 (03) :401-402
[34]   Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction [J].
Diz-Mellado, Eduardo ;
Rubino, Samuele ;
Fernandez-Garcia, Soledad ;
Gomez-Marmol, Macarena ;
Rivera-Gomez, Carlos ;
Galan-Marin, Carmen .
MATHEMATICS, 2021, 9 (10)
[35]   Conversion of hazardous waste into thermal conductive polymer: A prediction and guidance from machine learning [J].
Wang, Zhiyi ;
Su, Jiming ;
Feng, Yijin ;
Xu, Qianqian ;
Wang, Hui ;
Jiang, Hongru .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 370
[36]   A prediction model for thermal conductivity of metallic nuclear fuel based on multiple machine learning models [J].
Lu, Yong ;
Huang, Xiaoyi ;
Ren, Zhiyuan ;
Sun, Dan ;
Guo, Yihui ;
Liu, Xingjun ;
Wang, Cuiping .
JOURNAL OF NUCLEAR MATERIALS, 2023, 583
[37]   Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning [J].
Sahooli, M. ;
Sabbaghi, S. ;
Maleki, R. ;
Nematollahi, M. M. .
INTERNATIONAL JOURNAL OF NANO DIMENSION, 2014, 5 (01) :47-55
[38]   Advancing Thermal Conductivity Prediction of Metallic Materials by Integrating Molecular Dynamics Simulation with Machine Learning [J].
Kong, Qi ;
Shibut, Yasushi .
MATERIALS TRANSACTIONS, 2024, 65 (07) :790-797
[39]   Prediction Method of Tunneling-induced Ground Settlement Using Machine Learning Algorithms [J].
Chen R. ;
Dai T. ;
Zhang P. ;
Wu H. .
Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (07) :111-118
[40]   Harnessing machine learning for high-throughput screening of high thermal conductivity polyimides: A multiscale feature engineering approach [J].
Han, Jiale ;
Ying, Chunhua ;
Cao, Yue ;
Li, Wen ;
Feng, Yuan ;
Mortazavi, Masood ;
Wu, Pingfan ;
Peng, Liang ;
Wang, Jiechen .
NEXT MATERIALS, 2025, 6