A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms

被引:111
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Photon, Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Polymer nanocomposites(PNCs); Machine learning; Multiscale modeling; Thermal conductivity; Stochastic modeling; ARTIFICIAL NEURAL-NETWORK; CARBON NANOTUBES; FINITE-ELEMENT; OPTIMIZATION; COMPOSITES; RESISTANCE; ENERGY;
D O I
10.1016/j.compstruct.2021.114269
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a hybrid machine learning method to predict the thermal conductivity of polymeric nanocomposites (PNCs). Therefore, a combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. We select the thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Machine-Learning-Based Thermal Conductivity Prediction for Additively Manufactured Alloys [J].
Bhandari, Uttam ;
Chen, Yehong ;
Ding, Huan ;
Zeng, Congyuan ;
Emanet, Selami ;
Gradl, Paul R. ;
Guo, Shengmin .
JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (05)
[22]   Modeling of Nanoindentation Data and Characterization of Polymer Nanocomposites by a Multiscale Stochastic Finite Element Method [J].
Kontsos, A. ;
Spanos, P. D. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (10) :2273-2282
[23]   Multifold Increases in Thermal Conductivity of Polymer Nanocomposites through Microwave Welding of Metal Nanowire Fillers [J].
Seshadri, Indira ;
Esquenazi, Gibran L. ;
Borca-Tasciuc, Theodorian ;
Keblinski, Pawel ;
Ramanath, Ganpati .
ADVANCED MATERIALS INTERFACES, 2015, 2 (15)
[24]   Application of machine learning in predicting the thermal conductivity of single-filler polymer composites [J].
Liu, Yinzhou ;
Zheng, Weidong ;
Ai, Haoqiang ;
Zhou, Hao ;
Feng, Liyin ;
Cheng, Lin ;
Guo, Ruiqiang ;
Song, Xiaohan .
MATERIALS TODAY COMMUNICATIONS, 2024, 39
[25]   Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms [J].
Sharma, Palash ;
Ramesh, K. ;
Parameshwaran, R. ;
Deshmukh, Sandip S. .
CASE STUDIES IN THERMAL ENGINEERING, 2022, 30
[26]   Hybrid photovoltaic/thermal performance prediction based on machine learning algorithms with hyper-parameter tuning [J].
Ganesan, Karthikeyan ;
Palanisamy, Satheeshkumar ;
Krishnasamy, Valarmathi ;
Salau, Ayodeji Olalekan ;
Rathinam, Vinoth ;
Seeni Nayakkar, Sankar Ganesh .
INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)
[27]   Discovery of a Low Thermal Conductivity Oxide Guided by Probe Structure Prediction and Machine Learning [J].
Collins, Christopher M. ;
Daniels, Luke M. ;
Gibson, Quinn ;
Gaultois, Michael W. ;
Moran, Michael ;
Feetham, Richard ;
Pitcher, Michael J. ;
Dyer, Matthew S. ;
Delacotte, Charlene ;
Zanella, Marco ;
Murray, Claire A. ;
Glodan, Gyorgyi ;
Perez, Olivier ;
Pelloquin, Denis ;
Manning, Troy D. ;
Alaria, Jonathan ;
Darling, George R. ;
Claridge, John B. ;
Rosseinsky, Matthew J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (30) :16457-16465
[28]   Application of Machine Learning Algorithms in Predicting Rheological Behavior of BN-diamond/Thermal Oil Hybrid Nanofluids [J].
Ali, Abulhassan ;
Noshad, Nawal ;
Kumar, Abhishek ;
Ilyas, Suhaib Umer ;
Phelan, Patrick E. ;
Alsaady, Mustafa ;
Nasir, Rizwan ;
Yan, Yuying .
FLUIDS, 2024, 9 (01)
[29]   A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene-polymer nanocomposites [J].
Wang, Jie ;
Li, Chao ;
Li, Jackie ;
Weng, George J. ;
Su, Yu .
CARBON, 2021, 175 :259-270
[30]   CORROSION PREDICTION OF MAGNESIUM IMPLANT USING MULTISCALE MODELING BASED ON MACHINE LEARNING ALGORITHMS [J].
Mondal, Santu ;
Samanta, Rahul ;
Shit, Sahadeb ;
Biswas, Arindam ;
Bandyopadhyay, Atul ;
Dhar, Rudra Sankar ;
Mandal, Gurudas .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2024, 22 (04) :125-141