A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms

被引:90
|
作者
Liu, Bokai [4 ]
Nam Vu-Bac [3 ]
Rabczuk, Timon [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Div Computat Mech, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
[3] Leibniz Univ Hannover, Inst Photon, Hannover, Germany
[4] Bauhaus Univ Weimar, Inst Struct Mech, Marienstr 15, D-99423 Weimar, Germany
关键词
Polymer nanocomposites(PNCs); Machine learning; Multiscale modeling; Thermal conductivity; Stochastic modeling; ARTIFICIAL NEURAL-NETWORK; CARBON NANOTUBES; FINITE-ELEMENT; OPTIMIZATION; COMPOSITES; RESISTANCE; ENERGY;
D O I
10.1016/j.compstruct.2021.114269
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we propose a hybrid machine learning method to predict the thermal conductivity of polymeric nanocomposites (PNCs). Therefore, a combination of artificial neural network (ANN) and particle swarm optimization (PSO) is applied to estimate the relationship between variable input and output parameters. The ANN is used for modeling the composite while PSO improves the prediction performance through an optimized global minimum search. We select the thermal conductivity of the fibers and the matrix, the kapitza resistance, volume fraction and aspect ratio as input parameters. The output is the macroscopic (homogenized) thermal conductivity of the composite. The results show that the PSO significantly improves the predictive ability of this hybrid intelligent algorithm, which outperforms traditional neural networks.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Stochastic Multiscale Modeling of Electrical Conductivity of Carbon Nanotube Polymer Nanocomposites: An Interpretable Machine Learning Approach
    Elaskalany, Mostafa
    Behdinan, Kamran
    ADVANCED ENGINEERING MATERIALS, 2024, 26 (23)
  • [2] Optimization of mechanical properties of multiscale hybrid polymer nanocomposites: A combination of experimental and machine learning techniques
    Champa-Bujaico, Elizabeth
    Diez-Pascual, Ana M.
    Redondo, Alba Lomas
    Garcia-Diaz, Pilar
    COMPOSITES PART B-ENGINEERING, 2024, 269
  • [3] Multiscale modeling of thermal conductivity of polymer/carbon nanocomposites
    Clancy, T. C.
    Frankland, S. J. V.
    Hinkley, J. A.
    Gates, T. S.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) : 1555 - 1560
  • [4] Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites
    Mortazavi, Bohayra
    Hassouna, Fatima
    Laachachi, Abdelghani
    Rajabpour, Ali
    Ahzi, Said
    Chapron, David
    Toniazzo, Valerie
    Ruch, David
    THERMOCHIMICA ACTA, 2013, 552 : 106 - 113
  • [5] Effect of CNT coating on the overall thermal conductivity of unidirectional polymer hybrid nanocomposites
    Hassanzadeh-Aghdam, M. K.
    Mahmoodi, M. J.
    Jamali, J.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 124 : 190 - 200
  • [6] Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites
    Liu, Bokai
    Vu-Bac, Nam
    Zhuang, Xiaoying
    Fu, Xiaolong
    Rabczuk, Timon
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 224
  • [7] Model Approach to Thermal Conductivity in Hybrid Graphene-Polymer Nanocomposites
    Nadtochiy, Andriy B.
    Gorb, Alla M.
    Gorelov, Borys M.
    Polovina, Oleksiy I.
    Korotchenkov, Oleg
    Schlosser, Viktor
    MOLECULES, 2023, 28 (21):
  • [8] Machine learning based prediction model for thermal conductivity of concrete
    Sargam, Yogiraj
    Wang, Kejin
    Cho, In Ho
    JOURNAL OF BUILDING ENGINEERING, 2021, 34
  • [9] A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites
    Hassanzadeh-Aghdam, M. K.
    Mahmoodi, M. J.
    Jamali, J.
    Ansari, R.
    COMPOSITES PART B-ENGINEERING, 2019, 175
  • [10] Prediction of thermophysical properties of hybrid nanofluids using machine learning algorithms
    Bhanuteja, S.
    Srinivas, V.
    Moorthy, Ch. V. K. N. S. N.
    Kumar, S. Jai
    Raju, B. Lakshmipathi Lakshmipathi
    INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2024, 18 (09): : 6559 - 6572