Discrete-Time Implementation of Continuous Terminal Algorithm With Implicit-Euler Method

被引:1
作者
Xiong, Xiaogang [1 ]
Chen, Wei [2 ]
Jin, Shanhai [3 ]
Kamal, Shyam [4 ]
机构
[1] Harbin Inst Technol, Sch Mech Engn & Automat, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[3] Yanbian Univ, Sch Engn, Yanji 133000, Peoples R China
[4] Indian Inst Technol BHU Varanasi, Varanasi 221005, Uttar Pradesh, India
基金
中国国家自然科学基金;
关键词
Implicit-Euler discretization; discrete-time sliding mode control; terminal sliding model control; chattering-free implementation; discrete-time homogenous systems; SLIDING-MODE CONTROL; OBSERVER;
D O I
10.1109/ACCESS.2019.2957282
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an alternative implementation for a continuous terminal algorithm (CTA) proposed by Torres-Gonz alez et al. The original CTA is a continuous version of the twisting algorithm (TA), which mitigates the chattering by integrating the signum functions with increased relative higher order. However, the discrete-time version of CTA resulting from conventional explicit discretization method still suffer from some magnitude of chattering. The chattering is obvious when the gains of CTA and the time-step sizes are set large. We propose an implicit Euler integration method, which totally suppresses the chattering and keeps the properties of the continuous version of CTA, such as finite time convergence and high accuracy. The efficiency of this discrete-time implementation is illustrated by comparing it to the conventional explicit method.
引用
收藏
页码:175940 / 175946
页数:7
相关论文
共 17 条
[1]   Chattering-Free Digital Sliding-Mode Control With State Observer and Disturbance Rejection [J].
Acary, Vincent ;
Brogliato, Bernard ;
Orlov, Yury V. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (05) :1087-1101
[2]   Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems [J].
Acary, Vincent ;
Brogliato, Bernard .
SYSTEMS & CONTROL LETTERS, 2010, 59 (05) :284-293
[3]  
Brogliato Bernard, 2018, 2018 15th International Workshop on Variable Structure Systems (VSS), P349, DOI 10.1109/VSS.2018.8460395
[4]   A New Algorithm for Continuous Sliding Mode Control With Implementation to Industrial Emulator Setup [J].
Chalanga, Asif ;
Kamal, Shyam ;
Bandyopadhyay, Bijnan .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (05) :2194-2204
[5]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[6]   Implicit discrete-time twisting controller without numerical chattering: Analysis and experimental results [J].
Huber, Olivier ;
Acary, Vincent ;
Brogliato, Bernard ;
Plestan, Franck .
CONTROL ENGINEERING PRACTICE, 2016, 46 :129-141
[7]   Improving velocity feedback for position control by using a discrete-time sliding mode filtering with adaptive windowing [J].
Jin, Shanhai ;
Kikuuwe, Ryo ;
Yamamoto, Motoji .
ADVANCED ROBOTICS, 2014, 28 (14) :943-953
[8]   Continuous terminal sliding-mode controller [J].
Kamal, Shyam ;
Moreno, Jaime A. ;
Chalanga, Asif ;
Bandyopadhyay, Bijnan ;
Fridman, Leonid M. .
AUTOMATICA, 2016, 69 :308-314
[9]   Proxy-Based Sliding Mode Control: A Safer Extension of PID Position Control [J].
Kikuuwe, Ryo ;
Yasukouchi, Satoshi ;
Fujimoto, Hideo ;
Yamamoto, Motoji .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (04) :670-683
[10]   SLIDING ORDER AND SLIDING ACCURACY IN SLIDING MODE CONTROL [J].
LEVANT, A .
INTERNATIONAL JOURNAL OF CONTROL, 1993, 58 (06) :1247-1263