Recent advances in colloidal indium phosphide quantum dot production

被引:10
|
作者
Lee, Stephanie K. [1 ]
McLaurin, Emily J. [1 ]
机构
[1] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
LIGHT-EMITTING-DIODES; HYDROFLUORIC-ACID BURNS; HIGH-QUALITY INP; SEMICONDUCTOR NANOCRYSTALS; PRECURSOR CONVERSION; AT-ZNSES; CHEMISTRY; GROWTH; LUMINESCENCE; NUCLEATION;
D O I
10.1016/j.cogsc.2018.06.004
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The narrow, color-tunable luminescence of quantum dots (QDs) brought them to the forefront of commercial lighting and solar cells. Indium phosphide (InP) QDs emerged as the most promising replacement for cadmium selenide-based QDs for luminescence in the visible range (450-700 nm). Here, we consider areas of QD synthesis most relevant for future advances in InP. Advances in precursor chemistry, namely single-source precursors, facilitate synthesis of materials with more homogeneous properties. These isolable intermediates have atomically precise structure that introduces a scheme for the atom economy in InP QD synthesis. Methods for obtaining luminescent InP QDs are presented with emphasis on shorter reaction times, fewer steps, and less hazardous reagents. With these advances in luminescence quantum yield (QY), minimization of sample heterogeneity, and enhanced stability, emphasis on reproducibility, safety, and other green chemistry principles can be prioritized. The methods reviewed here highlight areas conducive to goals related to material properties and greener synthetic methods.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 50 条
  • [1] Zinc-Phosphorus Complex Working as an Atomic Valve for Colloidal Growth of Monodisperse Indium Phosphide Quantum Dots
    Koh, Sungjun
    Eom, Taedaehyeong
    Kim, Whi Dong
    Lee, Kangha
    Lee, Dongkyu
    Lee, Young Kuk
    Kim, Hyungjun
    Bae, Wan Ki
    Lee, Doh C.
    CHEMISTRY OF MATERIALS, 2017, 29 (15) : 6346 - 6355
  • [2] Synthesis and properties of colloidal indium phosphide quantum dots
    Brichkin, S. B.
    COLLOID JOURNAL, 2015, 77 (04) : 393 - 403
  • [3] Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning
    Nguyen, Hao A.
    Dou, Florence Y.
    Park, Nayon
    Wu, Shenwei
    Sarsito, Harrison
    Diakubama, Benedicte
    Larson, Helen
    Nishiwaki, Emily
    Homer, Micaela
    Cash, Melanie
    Cossairt, Brandi M.
    CHEMISTRY OF MATERIALS, 2022, 34 (14) : 6296 - 6311
  • [4] Investigation of Indium Phosphide Quantum Dot Nucleation and Growth Utilizing Triarylsilylphosphine Precursors
    Gary, Dylan C.
    Glassy, Benjamin A.
    Cossairt, Brandi M.
    CHEMISTRY OF MATERIALS, 2014, 26 (04) : 1734 - 1744
  • [5] Effect of Trace Water on the Growth of Indium Phosphide Quantum Dots
    Xie, Lisi
    Harris, Daniel K.
    Bawendi, Moungi G.
    Jensen, Klavs F.
    CHEMISTRY OF MATERIALS, 2015, 27 (14) : 5058 - 5063
  • [6] Surface activation of colloidal indium phosphide nanocrystals
    Li, Yang
    Pu, Chaodan
    Peng, Xiaogang
    NANO RESEARCH, 2017, 10 (03) : 941 - 958
  • [7] Thermodynamics of Composition Dependent Ligand Exchange on the Surfaces of Colloidal Indium Phosphide Quantum Dots
    Calvin, Jason J.
    O'Brien, Erin A.
    Sedlak, Adam B.
    Balan, Arunima D.
    Alivisatos, A. Paul
    ACS NANO, 2021, 15 (01) : 1407 - 1420
  • [8] Recent Advances and Prospects in Colloidal Nanomaterials
    Baek, Woonhyuk
    Chang, Hogeun
    Bootharaju, Megalamane S.
    Kim, Jeong Hyun
    Park, Sungjun
    Hyeon, Taeghwan
    JACS AU, 2021, 1 (11): : 1849 - 1859
  • [9] Recent Advances in Quantum Dot Surface Chemistry
    Hines, Douglas A.
    Kamat, Prashant V.
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (05) : 3041 - 3057
  • [10] Synthesis of super bright indium phosphide colloidal quantum dots through thermal diffusion
    Clarke, Mitchell T.
    Viscomi, Francesco Narda
    Chamberlaing, Thomas W.
    Hondow, Nicole
    Adawi, Ali M.
    Sturge, Justin
    Erwin, Steven C.
    Bouillarde, Jean-Sebastien G.
    Tamang, Sudarsan
    Stasiuk, Graeme J.
    COMMUNICATIONS CHEMISTRY, 2019, 2 (1)