An approach to modeling and on-line identification for piezoelectric stack actuator

被引:1
作者
Wang, Yueyu [1 ]
Zhao, Xuezeng [1 ]
Chu, Wei [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Peoples R China
来源
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXI, PTS 1-3 | 2007年 / 6518卷
关键词
SPM; piezoelectric stack actuator; model; hysteresis; creep;
D O I
10.1117/12.711851
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The piezoelectric stack actuator used in Scanning Probe Microscopes (SPMs) always exhibits significant hysteresis and creep. The hysteresis and creep will reduce the positioning precision and produce the distortion in scanning images. Therefore it is necessary to develop a model with sufficient accuracy and stability to characterize the nonlinearities of the piezoelectric stack actuator. In this paper, a novel hysteresis and creep model and a method for on-line identifying parameters of this model are proposed. Experiment result shows that, actuated by triangular-wave voltage, the predicting error using the proposed model is less than 2%, which is reduced by an order of magnitude comparing with the error directly predicted using input voltage. The validity of this method is demonstrated by experiment result.
引用
收藏
页数:10
相关论文
共 50 条
[41]   Active boundary control of spinning beams with elastic constraints using piezoelectric stack actuator [J].
Guo, Xiaodong ;
Su, Zhu ;
Wang, Lifeng .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
[42]   Compensation of nonlinearities in a piezoelectric stack actuator with application in intra-cytoplasmic sperm injection [J].
Putra, A. S. ;
Tan, K. K. ;
Lee, T. H. ;
Panda, S. K. ;
Huang, S. N. ;
Zhao, S. .
BIOMEDICAL APPLICATIONS OF MICRO- AND NANOENGINEERING III, 2007, 6416
[43]   Study on Transient Contact-Impact Characteristics and Driving Capability of Piezoelectric Stack Actuator [J].
Li, Yanze ;
Shen, Yunian ;
Xing, Qiaoping .
SENSORS, 2020, 20 (01)
[44]   Parameter identification and hysteresis compensation of embedded piezoelectric stack actuators [J].
Juhasz, Laszlo ;
Maas, Juergen ;
Borovac, Branislav .
MECHATRONICS, 2011, 21 (01) :329-338
[45]   Unified Minimalistic Modeling of Piezoelectric Stack Actuators for Engineering Applications [J].
Jain, Ajinkya ;
Datta, Rituparna ;
Bhattacharya, Bishakh .
ROBOT INTELLIGENCE TECHNOLOGY ANDAPPLICATIONS 3, 2015, 345 :459-473
[46]   A HYBRID MASTER-SLAVE GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR MODELING A PIEZOELECTRIC ACTUATOR [J].
Trabia, Mohamed B. ;
Saadeh, Mohammad Y. .
PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, VOL 1, 2012, :281-294
[47]   A Wiener Model Identification for Creep and Vibration Linear and Hysteresis Nonlinear Dynamics of Piezoelectric Actuator [J].
Qi, Chenkun ;
Lin, Jianfeng ;
Wu, Yuze ;
Gao, Feng .
IEEE SENSORS JOURNAL, 2021, 21 (24) :27570-27581
[48]   On-line identification of simplified CHP models [J].
Cagnano, Alessia ;
De Tuglie, Enrico ;
Turri, Roberto ;
Cervi, Andrea ;
Vian, Andrea .
2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2019,
[49]   Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model [J].
Qin, Yanding ;
Zhao, Xin ;
Zhou, Lu .
MICROMACHINES, 2017, 8 (04)
[50]   A hysteresis compensation method of piezoelectric actuator: Model, identification and control [J].
Ru, Changhai ;
Chen, Liguo ;
Shao, Bing ;
Rong, Weibin ;
Sun, Lining .
CONTROL ENGINEERING PRACTICE, 2009, 17 (09) :1107-1114