APPROXIMATION BY α-BERNSTEIN-SCHURER- STANCU OPERATORS

被引:1
|
作者
Cetin, Nursel [1 ]
Acu, Ana-Maria [2 ]
机构
[1] Ankara Haci Bayram Veli Univ, Polatli Fac Sci & Letters, Dept Math, TR-06900 Ankara, Turkey
[2] Lucian Blaga Univ Sibiu, Dept Math & Informat, Str Dr I Ratiu 5-7, RO-550012 Sibiu, Romania
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2021年 / 15卷 / 02期
关键词
Bernstein-Schurer-Stancu operators; alpha-Bernstein operator; modulus of continuity; Voronovskaya type theorem; Gruss-Voronovskaya type theorem; GRUSS-TYPE; INEQUALITIES;
D O I
10.7153/jmi-2021-15-59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a new family of generalized Bernstein-Schurer-Stancu operators, depending on a non-negative real parameter a and study some approximation properties of these operators. We obtain a recurrence formula concerning calculation of moments by Schurer-Stancu operators. We prove a uniform approximation result using the well-known Korovkin theorem and obtain the rate of convergence in terms of modulus of continuity. Also, we present Voronovskaya and Gruss-Voronovskaya type results for these operators. Moreover, we give some numerical examples to illustrate approximation by the new operator.
引用
收藏
页码:845 / 860
页数:16
相关论文
共 50 条
  • [21] Approximation Properties of λ-Bernstein-Kantorovich-Stancu Operators
    Bodur, Murat
    Manav, Nesibe
    Tasdelen, Fatma
    MATHEMATICA SLOVACA, 2022, 72 (01) : 141 - 152
  • [22] Uniform approximation of functions by Bernstein-Stancu operators
    Holhos, Adrian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2015, 31 (02) : 205 - 212
  • [23] Approximation by Stancu-Chlodowsky type λ-Bernstein operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    JOURNAL OF APPLIED ANALYSIS, 2020, 26 (01) : 97 - 110
  • [24] Statistical approximation properties of Stancu type λ-Bernstein operators
    Wang, Peng-Hui
    Cai, Qing-Bo
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 178 - 182
  • [25] TWO-DIMENSIONAL CHLODOWSKY VARIANT OF q-BERNSTEIN-SCHURER-STANCU OPERATORS
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 446 - 461
  • [26] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [27] Bivariate Chlodowsky-Stancu Variant of (p,q)-Bernstein-Schurer Operators
    Vedi-Dilek, Tuba
    Gemikonakli, Eser
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [28] On the Convergence of Bernstein-Kantorovich-Stancu Shifted Knots Operators involving Schurer Parameter
    Alotaibi, Abdullah
    Nasiruzzaman, Md.
    Mohiuddine, S. A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [29] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12
  • [30] Approximation of functions by a new class of generalized Bernstein–Schurer operators
    Faruk Özger
    H. M. Srivastava
    S. A. Mohiuddine
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114