First-principles study of the perfect and vacancy defect AlN nanoribbon

被引:73
作者
Zheng, Fang-Ling [1 ]
Zhang, Jian-Min [1 ]
Zhang, Yan [2 ]
Ji, Vincent [2 ]
机构
[1] Shaanxi Normal Univ, Coll Phys & Informat Technol, Xian 710062, Shaanxi, Peoples R China
[2] Univ Paris 11, CNRS, UMR 8182, ICMMO,LEMHE, F-91405 Orsay, France
关键词
First-principles; AlN nanoribbon; Electronic properties; Vacancy; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; GAN NANOWIRES; GRAPHENE; RIBBONS; METALS;
D O I
10.1016/j.physb.2010.05.085
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Under the generalized gradient approximation (GGA), the electronic and magnetic properties of the perfect and vacancy defect AlN nanoribbon with both zigzag edge (ZAlNNR) and armchair edge (AAlNNR) are studied using the first-principles projector-augmented wave (PAW) potential within the density function theory (DFT) framework. Both ZAlNNR and AAlNNR are semiconducting and nonmagnetic, and the indirect band gap of ZAlNNR and the direct band gap of AAlNNR decrease monotonically with increase in ribbon width. A single non-edge Al vacancy makes either ZAlNNR or AAlNNR a semi-metal and thus yields complete (100%) spin polarization as well as a significant magnetic moment. Hence a single non-edge Al vacancy defect AlNNR can be used to construct efficient spin-polarized transport devices. But a single non-edge N vacancy induces a small magnetic moment in AAlNNR only. The AlNNR with a single edge N or Al vacancy is still semiconducting and nonmagnetic, leading to additional states only within the gap region and thus reducing the band gap width, except for a single edge Al vacancy in AAlNNR. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3775 / 3781
页数:7
相关论文
共 31 条
[1]   Ab initio study of [001] GaN nanowires [J].
Agrawal, B. K. ;
Pathak, A. ;
Agrawal, S. .
JOURNAL OF NANOPARTICLE RESEARCH, 2009, 11 (04) :841-859
[2]   Doping and the unique role of vacancies in promoting the magnetic ground state in carbon nanotubes and C60 polymers [J].
Andriotis, Antonis N. ;
Sheetz, R. Michael ;
Menon, Madhu .
PHYSICAL REVIEW B, 2006, 74 (15)
[3]   First principle study of unzipped boron nitride nanotubes [J].
Azadi, Sam ;
Moradian, Rostam .
PHYSICS LETTERS A, 2010, 374 (04) :605-609
[4]   Imaging minority carrier diffusion in GaN nanowires using near field optical microscopy [J].
Baird, Lee ;
Ang, G. H. ;
Low, C. H. ;
Haegel, N. M. ;
Talin, A. A. ;
Li, Qiming ;
Wang, G. T. .
PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) :4933-4936
[5]   Metallic edges in zinc oxide nanoribbons [J].
Botello-Mendez, A. R. ;
Martinez-Martinez, M. T. ;
Lopez-Urias, F. ;
Terrones, M. ;
Terrones, H. .
CHEMICAL PHYSICS LETTERS, 2007, 448 (4-6) :258-263
[6]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[7]   Synthesis of aluminum nitride nanowires [J].
Cong, HT ;
Ma, HB ;
Sun, XC .
PHYSICA B-CONDENSED MATTER, 2002, 323 (1-4) :354-356
[8]   First-principle studies of electronic structure and C-doping effect in boron nitride nanoribbon [J].
Du, A. J. ;
Smith, Sean C. ;
Lu, G. Q. .
CHEMICAL PHYSICS LETTERS, 2007, 447 (4-6) :181-186
[9]   A DFT study of the nuclear magnetic response of the zigzag AlN-BN and BN-AlN nanotube junctions [J].
Farahani, Morteza ;
Ahmadi, Temer S. ;
Seif, Ahmad .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2009, 913 (1-3) :126-130
[10]   Will zigzag graphene nanoribbon turn to half metal under electric field? [J].
Kan, Er-Jun ;
Li, Zhenyu ;
Yang, Jinlong ;
Hou, J. G. .
APPLIED PHYSICS LETTERS, 2007, 91 (24)