Uniqueness and energy balance for isentropic Euler equation with stochastic forcing

被引:1
作者
Ghoshal, Shyam Sundar [1 ]
Jana, Animesh [1 ]
Sarkar, Barun [1 ,2 ]
机构
[1] Tata Inst Fundamental Res, Ctr Applicable Math, Bangalore 560065, Karnataka, India
[2] Indian Stat Inst, Bangalore Ctr, 8th Mile Mysore Rd, Bangalore 560059, Karnataka, India
关键词
Stochastic isentropic Euler system; Pathwise weak solution; Uniqueness; Besov space; Energy balance; Onsager's conjecture; NAVIER-STOKES EQUATIONS; COMPRESSIBLE EULER; DISSIPATIVE SOLUTIONS; WEAK SOLUTIONS; CONSERVATION; CONJECTURE; DRIVEN;
D O I
10.1016/j.nonrwa.2021.103328
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove uniqueness and energy balance for isentropic Euler system driven by a cylindrical Wiener process. Pathwise uniqueness result is obtained for weak solutions having Holder regularity C-alpha, alpha > 1/2 in space and satisfying one-sided Lipschitz bound on velocity. We prove Onsager's conjecture for isentropic Euler system with stochastic forcing, that is, energy balance equation for solutions enjoying Hiilder regularity C-alpha, alpha > 1/3. Both the results have been obtained in a more general setting by considering regularity in Besov space. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:18
相关论文
共 32 条
  • [1] ENERGY CONSERVATION FOR THE COMPRESSIBLE EULER AND NAVIER-STOKES EQUATIONS WITH VACUUM
    Akramov, Ibrokhimbek
    Debiec, Tomasz
    Skipper, Jack
    Wiedemann, Emil
    [J]. ANALYSIS & PDE, 2020, 13 (03): : 789 - 811
  • [2] [Anonymous], 2014, STOCHASTIC EQUATIONS
  • [3] Onsager's conjecture in bounded domains for the conservation of entropy and other companion laws
    Bardos, C.
    Gwiazda, P.
    Swierczewska-Gwiazda, A.
    Titi, E. S.
    Wiedemann, E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2230):
  • [4] On the Extension of Onsager's Conjecture for General Conservation Laws
    Bardos, Claude
    Gwiazda, Piotr
    Swierczewska-Gwiazda, Agnieszka
    Titi, Edriss S.
    Wiedemann, Emil
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (02) : 501 - 510
  • [5] STOCHASTIC ISENTROPIC EULER EQUATIONS
    Berthelin, Florent
    Vovelle, Julien
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2019, 52 (01): : 181 - 254
  • [6] Breit D., 2018, GRUYTER SERIES APPL, V3
  • [7] ON SOLVABILITY AND ILL-POSEDNESS OF THE COMPRESSIBLE EULER SYSTEM SUBJECT TO STOCHASTIC FORCES
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    [J]. ANALYSIS & PDE, 2020, 13 (02): : 371 - 402
  • [8] Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    Maslowski, Bohdan
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 981 - 1032
  • [9] Stochastic compressible Euler equations and inviscid limits
    Breit, Dominic
    Mensah, Prince Romeo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 184 : 218 - 238
  • [10] Local strong solutions to the stochastic compressible Navier-Stokes system
    Breit, Dominic
    Feireisl, Eduard
    Hofmanova, Martina
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (02) : 313 - 345