Spatio-Temporal Clustering of Traffic Data with Deep Embedded Clustering

被引:10
|
作者
Asadi, Reza [1 ]
Regan, Amelia [1 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
来源
PREDICTGIS 2019: PROCEEDINGS OF THE 3RD ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON PREDICTION OF HUMAN MOBILITY (PREDICTGIS 2019) | 2019年
关键词
Neural Networks; Time Series Clustering; Spatio-temporal data; Traffic Flow Data; PATTERNS;
D O I
10.1145/3356995.3364537
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traffic data is a challenging spatio-temporal data, and a multi-variate time series data with spatial similarities. Clustering of traffic data is a fundamental tool for various machine learning tasks including anomaly detection, missing data imputation and short term forecasting problems. In this paper, first, we formulate a spatiotemporal clustering problem and define temporal and spatial clusters. Then, we propose an approach for finding temporal and spatial clusters with a deep embedded clustering model. The proposed approach is examined on traffic flow data. In the analysis, we present the properties of clusters and patterns in the dataset. The analysis shows that the temporal and spatial clusters have meaningful relationships with temporal and spatial patterns in traffic data, and the clustering method effectively finds similarities in traffic data.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [1] A Density-Based Clustering of Spatio-Temporal Data
    Zaghlool, Ehab
    ElKaffas, Saleh
    Saad, Amani
    NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, 2015, 354 : 41 - 50
  • [2] A Novel Multi-view Similarity for Clustering Spatio-Temporal Data
    Velpula, Vijaya Bhaskar
    Prasad, M. H. M. Krishna
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION TECHNOLOGIES, IC3T 2015, VOL 1, 2016, 379 : 299 - 307
  • [3] Deep representation of imbalanced spatio-temporal traffic flow data for traffic accident detection
    Mehrannia, Pouya
    Bagi, Shayan Shirahmad Gale
    Moshiri, Behzad
    Al-Basir, Otman Adam
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (03) : 602 - 615
  • [4] Spatio-temporal clustering analysis and technological forecasting of nanotechnology using patent data
    Forestal, Roberto Louis
    Lee, Hsin Inn
    Pi, Shih-Ming
    Liu, Su-Houn
    TECHNOLOGY ANALYSIS & STRATEGIC MANAGEMENT, 2024, 36 (05) : 1037 - 1053
  • [5] Clustering Spatio-temporal Trajectories Based on Kernel Density Estimation
    Zhang, Pengdong
    Deng, Min
    Van de Weghe, Nico
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 298 - 311
  • [6] Bus Arrival Time Prediction Using a Modified Amalgamation of Fuzzy Clustering and Neural Network on Spatio-Temporal Data
    Khetarpaul, Sonia
    Gupta, S. K.
    Malhotra, Shikhar
    Subramaniam, L. Venkata
    DATABASES THEORY AND APPLICATIONS, 2015, 9093 : 142 - 154
  • [7] Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning
    Pan, Zheyi
    Liang, Yuxuan
    Wang, Weifeng
    Yu, Yong
    Zheng, Yu
    Zhang, Junbo
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1720 - 1730
  • [8] Deep Learning and Parallel Processing Spatio-Temporal Clustering Unveil New Ionian Distinct Seismic Zone
    Konstantaras, Antonios
    INFORMATICS-BASEL, 2020, 7 (04):
  • [9] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [10] Deep Learning for Spatio-Temporal Data Mining: A Survey
    Wang, Senzhang
    Cao, Jiannong
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3681 - 3700