Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures

被引:59
作者
Mes, Steven W. [1 ]
van Velden, Floris H. P. [2 ]
Peltenburg, Boris [3 ]
Peeters, Carel F. W. [4 ]
te Beest, Dennis E. [5 ]
van de Wiel, Mark A. [4 ,6 ]
Mekke, Joost [1 ]
Mulder, Doriene C. [7 ]
Martens, Roland M. [8 ]
Castelijns, Jonas A. [8 ]
Pameijer, Frank A. [9 ]
de Bree, Remco [3 ]
Boellaard, Ronald [8 ]
Leemans, C. Rene [1 ]
Brakenhoff, Ruud H. [1 ]
de Graaf, Pim [8 ]
机构
[1] Vrije Univ Amsterdam, Canc Ctr Amsterdam, Amsterdam UMC, Otolaryngol Head & Neck Surg, Amsterdam, Netherlands
[2] Leiden Univ, Sect Nucl Med, Dept Radiol, Med Ctr, Leiden, Netherlands
[3] Univ Med Ctr Utrecht, Dept Head & Neck Surg Oncol, Utrecht, Netherlands
[4] Vrije Univ Amsterdam, Amsterdam Publ Hlth Res Inst, Amsterdam UMC, Epidemiol & Biostat, Amsterdam, Netherlands
[5] Wageningen Univ & Res, Biometris, Wageningen, Netherlands
[6] Univ Cambridge, MRC, Biostat Unit, Cambridge, England
[7] Northwest Clin Alkmaar, Dept Oral & Maxillofacial Surg, Alkmaar, Netherlands
[8] Vrije Univ Amsterdam, Radiol & Nucl Med, Canc Ctr Amsterdam, Amsterdam UMC, De Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands
[9] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
Magnetic resonance imaging; Head and neck neoplasms; Prognosis; Factor analysis; PROGNOSTIC BIOMARKERS; TEXTURE ANALYSIS; CANCER; FEATURES;
D O I
10.1007/s00330-020-06962-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Head and neck squamous cell carcinoma (HNSCC) shows a remarkable heterogeneity between tumors, which may be captured by a variety of quantitative features extracted from diagnostic images, termed radiomics. The aim of this study was to develop and validate MRI-based radiomic prognostic models in oral and oropharyngeal cancer. Materials and Methods Native T1-weighted images of four independent, retrospective (2005-2013), patient cohorts (n = 102, n = 76, n = 89, and n = 56) were used to delineate primary tumors, and to extract 545 quantitative features from. Subsequently, redundancy filtering and factor analysis were performed to handle collinearity in the data. Next, radiomic prognostic models were trained and validated to predict overall survival (OS) and relapse-free survival (RFS). Radiomic features were compared to and combined with prognostic models based on standard clinical parameters. Performance was assessed by integrated area under the curve (iAUC). Results In oral cancer, the radiomic model showed an iAUC of 0.69 (OS) and 0.70 (RFS) in the validation cohort, whereas the iAUC in the oropharyngeal cancer validation cohort was 0.71 (OS) and 0.74 (RFS). By integration of radiomic and clinical variables, the most accurate models were defined (iAUC oral cavity, 0.72 (OS) and 0.74 (RFS); iAUC oropharynx, 0.81 (OS) and 0.78 (RFS)), and these combined models outperformed prognostic models based on standard clinical variables only (p < 0.001). Conclusions MRI radiomics is feasible in HNSCC despite the known variability in MRI vendors and acquisition protocols, and radiomic features added information to prognostic models based on clinical parameters.
引用
收藏
页码:6311 / 6321
页数:11
相关论文
共 46 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Reproducibility and Prognosis of Quantitative Features Extracted from CT Images
    Balagurunathan, Yoganand
    Gu, Yuhua
    Wang, Hua
    Kumar, Virendra
    Grove, Olya
    Hawkins, Sam
    Kim, Jongphil
    Goldgof, Dmitry B.
    Hall, Lawrence O.
    Gatenby, Robert A.
    Gillies, Robert J.
    [J]. TRANSLATIONAL ONCOLOGY, 2014, 7 (01) : 72 - 87
  • [3] Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma
    Bogowicz, Marta
    Riesterer, Oliver
    Stark, Luisa Sabrina
    Studer, Gabriela
    Unkelbach, Jan
    Guckenberger, Matthias
    Tanadini-Lang, Stephanie
    [J]. ACTA ONCOLOGICA, 2017, 56 (11) : 1531 - 1536
  • [4] Simultaneous multi-modality ROI delineation in clinical practice
    Bol, Gijsbert H.
    Kotte, Alexis N. T. J.
    van der Heide, Uulke A.
    Lagendijk, Jan J. W.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 96 (02) : 133 - 140
  • [5] Brierley J.D., 2016, TNM Classification of Malignant Tumours, V8th, DOI DOI 10.1002/9780471420194.TNMC26.PUB3
  • [6] Nasopharyngeal Cancer: Molecular Landscape
    Bruce, Jeff P.
    Yip, Kenneth
    Bratman, Scott V.
    Ito, Emma
    Liu, Fei-Fei
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (29) : 3346 - +
  • [7] Influence of MRI acquisition protocols and image intensity normalization methods on texture classification
    Collewet, G
    Strzelecki, M
    Mariette, F
    [J]. MAGNETIC RESONANCE IMAGING, 2004, 22 (01) : 81 - 91
  • [8] MRI Texture Analysis Predicts p53 Status in Head and Neck Squamous Cell Carcinoma
    Dang, M.
    Lysack, J. T.
    Wu, T.
    Matthews, T. W.
    Chandarana, S. P.
    Brockton, N. T.
    Bose, P.
    Bansal, G.
    Cheng, H.
    Mitchell, J. R.
    Dort, J. C.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (01) : 166 - 170
  • [9] Medical progress - Head and neck cancer
    Forastiere, A
    Koch, W
    Trotti, A
    Sidransky, D
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (26) : 1890 - 1900
  • [10] Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning
    Forghani, Reza
    Chatterjee, Avishek
    Reinhold, Caroline
    Perez-Lara, Almudena
    Romero-Sanchez, Griselda
    Ueno, Yoshiko
    Bayat, Maryam
    Alexander, James W. M.
    Kadi, Lynda
    Chankowsky, Jeffrey
    Seuntjens, Jan
    Forghani, Behzad
    [J]. EUROPEAN RADIOLOGY, 2019, 29 (11) : 6172 - 6181