Nondestructive detection of total soluble solids in grapes using VMD-RC and hyperspectral imaging

被引:15
|
作者
Xu, Min [1 ,2 ]
Sun, Jun [1 ]
Yao, Kunshan [1 ]
Wu, Xiaohong [1 ]
Shen, Jifeng [1 ]
Cao, Yan [1 ]
Zhou, Xin [1 ]
机构
[1] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Changzhou Coll Informat Technol, Sch Elect Engn, Changzhou 213164, Jiangsu, Peoples R China
基金
中国博士后科学基金;
关键词
hyperspectral imaging; machine learning; nondestructive detection; table grapes; total soluble solids; wavelength selection; NIR SPECTROSCOPY; MULTIVARIATE CALIBRATION; SELECTION; BERRIES; PREDICTION; QUALITY; SUBSET; PH;
D O I
10.1111/1750-3841.16004
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Total soluble solids (TSS) are one of the most essential attributes determining the quality and price of fruit. This study aimed to use hyperspectral imaging (HSI) and wavelength selection for nondestructive detection of TSS in grape. A novel method involving variational mode decomposition and regression coefficients (VMD-RC) was proposed to select feature wavelengths. VMD was introduced to decompose the hyperspectral images data of samples with bands of (400.68-1001.61 nm) to get a series of feature components. Afterward, these components were processed separately using regression analysis to obtain the stability values of RC of each component. Finally, a filter-based selection strategy was used to screen key wavelengths. The least squares support vector machine (LSSVM) and partial least squares (PLS) were constructed under full and feature wavelengths for predicting TSS. The VMD-RC-LSSVM model obtained the best prediction accuracy for TSS, with Rp2 of 0.93, with RMSEP of 0.6 %, with RER of 18.14 and RPDp of 3.69. The overall results indicated that the VMD-RC algorithm can be used as an alternative to handle high-dimensional hyperspectral images data, and HSI has great potential for nondestructive and rapid evaluation of quality attributes in fruit. Practical Application Traditional methods of evaluating grape quality attributes are destructive, time-consuming and laborious. Therefore, HSI was used to achieve rapid and nondestructive determination of TSS in grape. The results indicated that it was feasible to use HSI and variable selection for predicting TSS. It is of great significance to improve grape quality, guide postharvest handling and provide a valuable reference for noninvasively evaluating other internal attributes of fruit.
引用
收藏
页码:326 / 338
页数:13
相关论文
共 50 条
  • [41] In Situ Nondestructive Detection of Nitrogen Content in Soybean Leaves Based on Hyperspectral Imaging Technology
    Zhang, Yakun
    Guan, Mengxin
    Wang, Libo
    Cui, Xiahua
    Li, Tingting
    Zhang, Fu
    AGRONOMY-BASEL, 2024, 14 (04):
  • [42] Rapid nondestructive hardness detection of black highland Barley Kernels via hyperspectral imaging
    Xiong, Chunhui
    She, Yongxin
    Jiao, Xun
    Zhang, Tangwei
    Wang, Miao
    Wang, Mengqiang
    Abd El Aty, A. M.
    Wang, Jing
    Xiao, Ming
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2024, 127
  • [43] Combining hyperspectral imaging technology and visible-near infrared spectroscopy with a data fusion strategy for the detection of soluble solids content in apples
    Lin, Yi
    Fan, Rongsheng
    Wu, Youli
    Zhan, Chunyi
    Qing, Rui
    Li, Kunyu
    Kang, Zhiliang
    JOURNAL OF FOOD COMPOSITION AND ANALYSIS, 2025, 137
  • [44] nondestructive detection of kiwifruit textural characteristic based on near infrared hyperspectral imaging technology
    Li, Jing
    Huang, Bohan
    Wu, Chenpeng
    Sun, Zheng
    Xue, Long
    Liu, Muhua
    Chen, Jinyin
    INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2022, 25 (01) : 1697 - 1713
  • [45] Recent Advances in Nondestructive Analytical Techniques for Determining the Total Soluble Solids in Fruits: A Review
    Li, Jiang-Lin
    Sun, Da-Wen
    Cheng, Jun-Hu
    COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2016, 15 (05): : 897 - 911
  • [46] Nondestructive Detection of Soluble Solids Content of Nanfeng Mandarin Orange Using VIS-NIR Spectroscopy
    Zhang Lu
    Xue Long
    Liu Muhua
    Li Jing
    NATURAL RESOURCES AND SUSTAINABLE DEVELOPMENT, PTS 1-3, 2012, 361-363 : 1634 - +
  • [47] Nondestructive detection of mango soluble solid content in hyperspectral imaging based on multi-combinatorial feature wavelength selection
    Lin, J. J.
    Meng, Q. H.
    Wu, Z. F.
    Pei, S. Y.
    Tian, P.
    Huang, X.
    Qiu, Z. Q.
    Chang, H. J.
    Ni, C. Y.
    Huang, Y. Q.
    Li, Y.
    ACTA ALIMENTARIA, 2023, 52 (03) : 401 - 412
  • [48] Detection of early bruises in apples using hyperspectral data and thermal imaging
    Baranowski, Piotr
    Mazurek, Wojciech
    Wozniak, Joanna
    Majewska, Urszula
    JOURNAL OF FOOD ENGINEERING, 2012, 110 (03) : 345 - 355
  • [49] Advance in Nondestructive Detection of Fruit Internal Quality Based on Hyperspectral Imaging
    Ma Ben-xue
    Ying Yi-bin
    Rao Xiu-qin
    Gui Jiang-sheng
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29 (06) : 1611 - 1615
  • [50] Comparative analysis of models for robust and accurate evaluation of soluble solids content in 'Pinggu' peaches by hyperspectral imaging
    Li, Jiangbo
    Chen, Liping
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 142 : 524 - 535