Quantum field theoretical structure of electrical conductivity of cold and dense fermionic matter in the presence of a magnetic field

被引:9
作者
Satapathy, Sarthak [1 ,2 ]
Ghosh, Snigdha [3 ]
Ghosh, Sabyasachi [1 ]
机构
[1] Indian Inst Technol Bhilai, GEC Campus, Raipur 492015, Chhattisgarh, India
[2] HBNI, Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar 752050, Jatni, India
[3] Govt Gen Degree Coll Kharagpur II, Paschim Medinipur 721149, W Bengal, India
关键词
QED EFFECTIVE ACTION; FINITE-TEMPERATURE; BISMUTH CRYSTALS; THERMAL-CONDUCTIVITY; TIME FORMALISM;
D O I
10.1103/PhysRevD.106.036006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have gone through a detailed calculation of the two-point correlation function of vector currents at finite density and magnetic field by employing the real time formalism of finite temperature field theory and Schwinger's proper-time formalism. With respect to the direction of the external magnetic field, the parallel and perpendicular components of electric conductivity for the degenerate relativistic fermionic matter are obtained from the zero-momentum limit of the current-current correlator, using the Kubo formula. Our quantum-field theoretical expressions and numerical estimations are compared with those obtained from the relaxation-time approximation methods of kinetic theory and its Landau quantized extension, which can be called classical and quantum results, respectively. All the results are merged in the classical domain i.e., the high-density and low-density magnetic field region, but in the remaining (quantum) domain, quantum results carry a quantized information like the Shubnikov-de Haas oscillation along the density and magnetic field axes. We have obtained a completely new quantum-field theoretical expression for perpendicular conductivity of degenerate relativistic fermionic matter. Interestingly, our quantum field theoretical calculation provides a new mathematical form of the cyclotron frequency with respect to its classical definition, which might require more future research to interpret the phenomena.
引用
收藏
页数:14
相关论文
共 79 条
  • [1] GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (16)
  • [2] ABRIKOSOV AA, 1964, SOV PHYS JETP-USSR, V18, P1399
  • [3] Evidence for quark-matter cores in massive neutron stars
    Annala, Eemeli
    Gorda, Tyler
    Kurkela, Aleksi
    Nattila, Joonas
    Vuorinen, Aleksi
    [J]. NATURE PHYSICS, 2020, 16 (09) : 907 - +
  • [4] Effective potential at finite temperature in a constant magnetic field:: Ring diagrams in a scalar theory -: art. no. 023004
    Ayala, A
    Sánchez, A
    Piccinelli, G
    Sahu, S
    [J]. PHYSICAL REVIEW D, 2005, 71 (02): : 023004 - 1
  • [5] Chiral fermion mass and dispersion relations at finite temperature in the presence of hypermagnetic fields
    Ayala, A
    Bashir, A
    Sahu, S
    [J]. PHYSICAL REVIEW D, 2004, 69 (04):
  • [6] Effect of magnetized phonons on electrical and thermal conductivity of neutron star crust
    Baiko, D. A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (03) : 2840 - 2847
  • [7] From hadrons to quarks in neutron stars: a review
    Baym, Gordon
    Hatsuda, Tetsuo
    Kojo, Toru
    Powell, Philip D.
    Song, Yifan
    Takatsuka, Tatsuyuki
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (05)
  • [8] Bellac M. L., 2011, THERMAL FIELD THEORY
  • [9] Calzetta EA, 2008, CAM M MATH, P1, DOI 10.1017/CBO9780511535123
  • [10] Canuto V., 1969, Physical Review, V188, P2446, DOI 10.1103/PhysRev.188.2446