Equipartition of current in metallic armchair nanoribbon of graphene-based device

被引:2
作者
Yang, Hui [1 ,2 ]
Zeng, Junjie [1 ,2 ]
You, Sanyi [1 ,2 ]
Han, Yulei [3 ]
Qiao, Zhenhua [1 ,2 ,4 ]
机构
[1] Univ Sci & Technol China, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Fuzhou Univ, Dept Phys, Fuzhou 350108, Peoples R China
[4] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, ICQD, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; electronic transport; armchair nanoribbon; INDUCED BANDGAP; TRANSPORT;
D O I
10.1007/s11467-022-1201-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We numerically investigate the mesoscopic electronic transport properties of Bernal-stacked bilayer/trilayer graphene connected with four monolayer graphene terminals. In armchair-terminated metallic bilayer graphene, we show that the current from one incoming terminal can be equally partitioned into other three outgoing terminals near the charge-neutrality point, and the conductance periodically fluctuates, which is independent of the ribbon width but influenced by the interlayer hopping energy. This finding can be clearly understood by using the wave function matching method, in which a quantitative relationship between the periodicity, Fermi energy, and interlayer hopping energy can be reached. Interestingly, for the trilayer case, when the Fermi energy is located around the charge-neutrality point, the fractional quantized conductance I/(4e(2)h) can be achieved when system exceeds a critical length.
引用
收藏
页数:7
相关论文
共 55 条
  • [1] Electron collimation at van der Waals domain walls in bilayer graphene
    Abdullah, H. M.
    da Costa, D. R.
    Bahlouli, H.
    Chaves, A.
    Peeters, F. M.
    Van Duppen, B.
    [J]. PHYSICAL REVIEW B, 2019, 100 (04)
  • [2] Quantum transport across van der Waals domain walls in bilayer graphene
    Abdullah, H. M.
    Van Duppen, B.
    Zarenia, M.
    Bahlouli, H.
    Peeters, F. M.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (42)
  • [3] Colloquium: Andreev reflection and Klein tunneling in graphene
    Beenakker, C. W. J.
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (04) : 1337 - 1354
  • [4] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [5] Role of geometry and topological defects in the one-dimensional zero-line modes of graphene
    Bi, Xintao
    Jung, Jeil
    Qiao, Zhenhua
    [J]. PHYSICAL REVIEW B, 2015, 92 (23)
  • [6] Electronic states of graphene nanoribbons studied with the Dirac equation
    Brey, L
    Fertig, HA
    [J]. PHYSICAL REVIEW B, 2006, 73 (23):
  • [7] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [8] Gate-tunable graphene spin valve
    Cho, Sungjae
    Chen, Yung-Fu
    Fuhrer, Michael S.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [9] Electronic transport in two-dimensional graphene
    Das Sarma, S.
    Adam, Shaffique
    Hwang, E. H.
    Rossi, Enrico
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 407 - 470
  • [10] Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms
    Deng, Xinzhou
    Yang, Hualing
    Qi, Shifei
    Xu, Xiaohong
    Qiao, Zhenhua
    [J]. FRONTIERS OF PHYSICS, 2018, 13 (05)