Biosorption of heavy metals from aqueous solutions by chemically modified orange peel

被引:421
作者
Feng, Ningchuan [2 ]
Guo, Xueyi [1 ]
Liang, Sha [1 ]
Zhu, Yanshu [2 ]
Liu, Jianping [2 ]
机构
[1] Cent South Univ, Sch Met Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Ningxia Med Univ, Sch Basic Med Sci, Yinchuan 750004, Peoples R China
基金
中国国家自然科学基金;
关键词
Modified orange peel; Heavy metal ions; Biosorption; Isotherms; Kinetics; Thermodynamics; ACTIVATED CARBON; ION-EXCHANGE; COIR PITH; ADSORPTION; REMOVAL; BIOMASS; LEAD; CADMIUM; CD2+; EQUILIBRIUM;
D O I
10.1016/j.jhazmat.2010.08.114
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Equilibrium, thermodynamic and kinetic studies were carried out for the biosorption of Pb2+, Cd2+ and Ni2+ ions from aqueous solution using the grafted copolymerization-modified orange peel (OPAA). Langmuir and Freundlich isotherm models were applied to describe the biosorption of the metal ions onto OPAA. The influences of pH and contact time of solution on the biosorption were studied. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. According to the Langmuir equation, the maximum uptake capacities for Pb2+, Cd2+ and Ni2+ ions were 476 1,293.3 and 162.6 mg g(-1), respectively. Compared with the unmodified orange peel, the biosorption capacity of the modified biomass increased 4.2-, 4.6- and 16.5-fold for Pb2+, Cd2+ and Ni2+, respectively. The kinetics for Pb2+, Cd2+ and Ni2+ ions biosorption followed the pseudo-second-order kinetics. The free energy changes (Delta G degrees) for Pb2+, Cd2+ and Ni2+ ions biosorption process were found to be -3.77, -4.99 and -4.22 kJ mol(-1), respectively, which indicates the spontaneous nature of biosorption process. FTIR demonstrated that carboxyl and hydroxyl groups were involved in the biosorption of the metal ions. Desorption of Pb2+, Cd2+ and Ni2+ ions from the biosorbent was effectively achieved in a 0.05 mol L-1 HCl solution. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 44 条
[1]   Adsorption studies on Citrus reticulata (fruit peel of orange):: removal and recovery of Ni(II) from electroplating wastewater [J].
Ajmal, M ;
Rao, RAK ;
Ahmad, R ;
Ahmad, J .
JOURNAL OF HAZARDOUS MATERIALS, 2000, 79 (1-2) :117-131
[2]  
Ashkenazy R, 1997, BIOTECHNOL BIOENG, V55, P1, DOI 10.1002/(SICI)1097-0290(19970705)55:1<1::AID-BIT1>3.0.CO
[3]  
2-H
[4]  
Baig T.H., 1999, P 1999 C HAZ WAST RE, V131, P131
[5]   The adsorption of phosphate from an aquatic environment using metal-loaded orange waste [J].
Biswas, Biplob Kumar ;
Inoue, Katsutoshi ;
Ghimire, Kedar Nath ;
Ohta, Shingo ;
Harada, Hiroyuki ;
Ohto, Keisuke ;
Kawakita, Hidetaka .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 312 (02) :214-223
[6]  
BUFFLE J, 1988, COMPLEXATION REACTIO, pCH9
[7]  
COSTA ACA, 1996, MINER ENG, V9, P811, DOI DOI 10.1016/0892-6875(96)00074-X
[8]   Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J].
Dabrowski, A ;
Hubicki, Z ;
Podkoscielny, P ;
Robens, E .
CHEMOSPHERE, 2004, 56 (02) :91-106
[9]   Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption [J].
Deng, SB ;
Ting, YP .
LANGMUIR, 2005, 21 (13) :5940-5948
[10]   Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J].
Febrianto, Jonathan ;
Kosasih, Aline Natasia ;
Sunarso, Jaka ;
Ju, Yi-Hsu ;
Indraswati, Nani ;
Ismadji, Suryadi .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 162 (2-3) :616-645