Maps Preserving Peripheral Spectrum of Generalized Jordan Products of Operators

被引:2
|
作者
Zhang, Wen [1 ]
Hou, Jin Chuan [1 ,2 ]
Qi, Xiao Fei [1 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Peripheral spectrum; generalized Jordan products; Banach spaces; standard operator algebras; BANACH-ALGEBRAS; LINEAR-MAPS; ISOMORPHISMS; MAPPINGS; THEOREM;
D O I
10.1007/s10114-015-4367-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-1 and X-2 be complex Banach spaces with dimension at least three, A(1) and A(2) be standard operator algebras on X-1 and X-2, respectively. For k >= 2, let (i(1), i(2), ..., i(m)) be a finite sequence such that {i(1), i(2), ...., i(m)) = {1,2, ..., k} and assume that at least one of the terms in {i(1), ..., i(m)} appears exactly once. Define the generalized Jordan product T-1 o T-2 o ... o T-k = Ti1Ti2 ...T-im + T-im ... Ti2Ti1 on elements in A(i). This includes the usual Jordan product A(1)A(2) + A(2)A(1), and the Jordan triple A(1)A(2)A(3) + A(3)A(2)A(1). Let Phi : A(1) -> A(2) be a map with range containing all operators of rank at most three. It is shown that Phi satisfies that sigma(pi) (Phi(A(1)) o ... o Phi(A(k))) = sigma(pi) (A(1) o ... o A(k)) for all A(1),..., A(k), where sigma(pi) (A) stands for the peripheral spectrum of A, if and only if Phi is a Jordan isomorphism multiplied by an m-th root of unity.
引用
收藏
页码:953 / 972
页数:20
相关论文
共 50 条
  • [22] Maps preserving the local spectrum of triple product of operators
    Bourhim, Abdellatif
    Mashreghi, Javad
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04) : 765 - 773
  • [23] A note on spectrum-preserving maps
    Alaminos, J.
    Bresar, M.
    Semrl, P.
    Villena, A. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 595 - 603
  • [24] Maps preserving the dimension of fixed points of products of operators
    Taghavi, Ali
    Hosseinzadeh, Roja
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (10) : 1285 - 1292
  • [25] Approximately spectrum-preserving maps
    Alaminos, J.
    Extremera, J.
    Villena, A. R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (01) : 233 - 266
  • [26] Continuous maps preserving Jordan triple products from Un to Dm
    Taghavi, Ali
    Salehi, Sadegh
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2019, 30 (01): : 157 - 164
  • [27] Maps preserving the local spectrum of skew-product of operators
    Abdelali, Z.
    Achchi, A.
    Marzouki, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 : 58 - 71
  • [28] Maps Preserving 2-Idempotency of Certain Products of Operators
    Khodaiemehr, Hossein
    Sady, Fereshteh
    FILOMAT, 2017, 31 (12) : 3909 - 3916
  • [29] Maps preserving zero products
    Alaminos, J.
    Bresar, M.
    Extremera, J.
    Villena, A. R.
    STUDIA MATHEMATICA, 2009, 193 (02) : 131 - 159
  • [30] Maps preserving numerical radius or cross norms of products of self-adjoint operators
    He, Kan
    Hou, Jin Chuan
    Zhang, Xiu Ling
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (06) : 1071 - 1086