Natural SINEUP RNAs in Autism Spectrum Disorders: RAB11B-AS1 Dysregulation in a Neuronal CHD8 Suppression Model Leads to RAB11B Protein Increase

被引:3
作者
Zarantonello, Giulia [1 ]
Arnoldi, Michele [1 ]
Filosi, Michele [2 ]
Tebaldi, Toma [3 ,4 ]
Spirito, Giovanni [5 ,6 ]
Barbieri, Anna [1 ]
Gustincich, Stefano [6 ]
Sanges, Remo [5 ,6 ]
Domenici, Enrico [2 ,7 ]
Di Leva, Francesca [1 ]
Biagioli, Marta [1 ]
机构
[1] Univ Trento, Dept Cellular Computat & Integrat Biol CIBIO, Lab Neuroepigenet, Trento, Italy
[2] Univ Trento, Dept Cellular Computat & Integrat Biol CIBIO, Lab Neurogen Biomarkers, Trento, Italy
[3] Yale Univ, Sch Med, Yale Canc Ctr, Dept Internal Med,Sect Hematol, New Haven, CT USA
[4] Univ Trento, Dept Cellular Computat & Integrat Biol CIBIO, Lab RNA & Dis Data Sci, Trento, Italy
[5] Int Sch Adv Stud SISSA, Lab Computat Gen Area Neurosci, Trieste, Italy
[6] Italian Inst Technol IIT, Cent RNA Lab, Genoa, Italy
[7] Univ Trento, Ctr Computat & Syst Biol COSBI, Fnd Microsoft Res, Rovereto, Italy
关键词
autism spectrum disorders (ASD); CHD8; lncRNA; natural antisense transcript (NAT); SINEUP; post-transcriptional regulation; neurodeveloment; RAB11; GTPase; LONG NONCODING RNAS; GENE-EXPRESSION; TRAFFICKING; TRANSLATION;
D O I
10.3389/fgene.2021.745229
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
CHD8 represents one of the highest confidence genetic risk factors implied in Autism Spectrum Disorders, with most mutations leading to CHD8 haploinsufficiency and the insurgence of specific phenotypes, such as macrocephaly, facial dysmorphisms, intellectual disability, and gastrointestinal complaints. While extensive studies have been conducted on the possible consequences of CHD8 suppression and protein coding RNAs dysregulation during neuronal development, the effects of transcriptional changes of long non-coding RNAs (lncRNAs) remain unclear. In this study, we focused on a peculiar class of natural antisense lncRNAs, SINEUPs, that enhance translation of a target mRNA through the activity of two RNA domains, an embedded transposable element sequence and an antisense region. By looking at dysregulated transcripts following CHD8 knock down (KD), we first identified RAB11B-AS1 as a potential SINEUP RNA for its domain configuration. Then we demonstrated that such lncRNA is able to increase endogenous RAB11B protein amounts without affecting its transcriptional levels. RAB11B has a pivotal role in vesicular trafficking, and mutations on this gene correlate with intellectual disability and microcephaly. Thus, our study discloses an additional layer of molecular regulation which is altered by CHD8 suppression. This represents the first experimental confirmation that naturally occurring SINEUP could be involved in ASD pathogenesis and underscores the importance of dysregulation of functional lncRNAs in neurodevelopment.
引用
收藏
页数:12
相关论文
共 72 条
[31]   The human genome browser at UCSC [J].
Kent, WJ ;
Sugnet, CW ;
Furey, TS ;
Roskin, KM ;
Pringle, TH ;
Zahler, AM ;
Haussler, D .
GENOME RESEARCH, 2002, 12 (06) :996-1006
[32]  
Khvotchev MV, 2003, J NEUROSCI, V23, P10531
[33]   Common DNA methylation alterations in multiple brain regions in autism [J].
Ladd-Acosta, C. ;
Hansen, K. D. ;
Briem, E. ;
Fallin, M. D. ;
Kaufmann, W. E. ;
Feinberg, A. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (08) :862-871
[34]   MOLECULAR ANALYSIS OF MOUSE RAB11B - A NEW-TYPE OF MAMMALIAN YPT/RAB PROTEIN [J].
LAI, F ;
STUBBS, L ;
ARTZT, K .
GENOMICS, 1994, 22 (03) :610-616
[35]   Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype [J].
Lamers, Ideke J. C. ;
Reijnders, Margot R. F. ;
Venselaar, Hanka ;
Kraus, Alison ;
Jansen, Sandra ;
de Vries, Bert B. A. ;
Houge, Gunnar ;
Gradek, Gyri Aasland ;
Seo, Jieun ;
Choi, Murim ;
Chae, Jong-Hee ;
van der Burgt, Ineke ;
Pfundt, Rolph ;
Letteboer, Stef J. F. ;
van Beersum, Sylvia E. C. ;
Dusseljee, Simone ;
Brunner, Han G. ;
Doherty, Dan ;
Kleefstra, Tjitske ;
Roepman, Ronald .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (05) :824-832
[36]   Software for Computing and Annotating Genomic Ranges [J].
Lawrence, Michael ;
Huber, Wolfgang ;
Pages, Herve ;
Aboyoun, Patrick ;
Carlson, Marc ;
Gentleman, Robert ;
Morgan, Martin T. ;
Carey, Vincent J. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (08)
[37]   Upregulation of long noncoding RNA RAB11B-AS1 promotes tumor metastasis and predicts poor prognosis in lung cancer [J].
Li, Tiegang ;
Wu, Di ;
Liu, Qun ;
Wang, Dedong ;
Chen, Jinbin ;
Zhao, Hongjun ;
Zhang, Lan ;
Xie, Chenli ;
Zhu, Wei ;
Chen, Zhixu ;
Zhou, Yifeng ;
Datta, Soham ;
Qiu, Fuman ;
Yang, Lei ;
Lu, Jiachun .
ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (09)
[38]   Gateways to the FANTOM5 promoter level mammalian expression atlas [J].
Lizio, Marina ;
Harshbarger, Jayson ;
Shimoji, Hisashi ;
Severin, Jessica ;
Kasukawa, Takeya ;
Sahin, Serkan ;
Abugessaisa, Imad ;
Fukuda, Shiro ;
Hori, Fumi ;
Ishikawa-Kato, Sachi ;
Mungall, Christopher J. ;
Arner, Erik ;
Baillie, J. Kenneth ;
Bertin, Nicolas ;
Bono, Hidemasa ;
de Hoon, Michiel ;
Diehl, Alexander D. ;
Dimont, Emmanuel ;
Freeman, Tom C. ;
Fujieda, Kaori ;
Hide, Winston ;
Kaliyaperumal, Rajaram ;
Katayama, Toshiaki ;
Lassmann, Timo ;
Meehan, Terrence F. ;
Nishikata, Koro ;
Ono, Hiromasa ;
Rehli, Michael ;
Sandelin, Albin ;
Schultes, Erik A. ;
Hoen, Peter A. C't ;
Tatum, Zuotian ;
Thompson, Mark ;
Toyoda, Tetsuro ;
Wright, Derek W. ;
Daub, Carsten O. ;
Itoh, Masayoshi ;
Carninci, Piero ;
Hayashizaki, Yoshihide ;
Forrest, Alistair R. R. ;
Kawaji, Hideya .
GENOME BIOLOGY, 2015, 16
[39]  
Mattick John S., 2018, Non-Coding RNA, V4, P17, DOI 10.3390/ncrna4030017
[40]   Long non-coding RNAs: insights into functions [J].
Mercer, Tim R. ;
Dinger, Marcel E. ;
Mattick, John S. .
NATURE REVIEWS GENETICS, 2009, 10 (03) :155-159