Stability of Traveling Wave Fronts for Nonlocal Diffusion Equation with Delayed Nonlocal Response

被引:9
作者
Cheng, Hongmei [1 ]
Yuan, Rong [2 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2016年 / 20卷 / 04期
基金
中国国家自然科学基金;
关键词
Nonlocal diffusion; Asymptotic stability; Traveling wave fronts; Super and subsolution; Comparisonprinciple; Squeezing method; Delayed nonlocalr esponse; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC STABILITY; EVANS FUNCTION; EXISTENCE; UNIQUENESS; SYSTEMS; MONOTONICITY; DISEASE; MODEL;
D O I
10.11650/tjm.20.2016.6284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider with the stability of traveling wave fronts for the nonlocal diffusion equation with delay and global response. We first establish the existence and comparison theorem of solutions for the nonlocal reaction-diffusion equation by appealing to the theory of abstract functional differential equation. Then we further show that the traveling wave fronts are asymptotical stability with phase shift. Our main technique is the super and subsolution method coupled with the comparison principle and squeezing method.
引用
收藏
页码:801 / 822
页数:22
相关论文
共 42 条
[1]   Monotone travelling fronts in an age-structured reaction-diffusion model of a single species [J].
Al-Omari, J ;
Gourley, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (04) :294-312
[2]  
[Anonymous], 1986, Reaction-diffusion equations and their applications to biology
[3]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[4]  
[Anonymous], 1979, LECT NOTES BIOMATHEM
[5]  
[Anonymous], 2003, MATH BIOL 2 SPATIAL
[6]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[7]   Traveling waves in a convolution model for phase transitions [J].
Bates, PW ;
Fife, PC ;
Ren, XF ;
Wang, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 138 (02) :105-136
[8]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[9]   Uniqueness of travelling waves for nonlocal monostable equations [J].
Carr, J ;
Chmaj, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) :2433-2439
[10]  
Chen X., 1997, ADV DIFFER EQU-NY, V2, P125, DOI DOI 10.1186/1687-1847-2013-125