Secret Key Generation Using Chaotic Signals Over Frequency Selective Fading Channels

被引:23
作者
Haroun, Mohamed F. [1 ]
Gulliver, T. Aaron [1 ]
机构
[1] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 2Y2, Canada
关键词
Key generation; channel reciprocity; frequency selective channel; chaotic signal; AGREEMENT; RANDOMNESS;
D O I
10.1109/TIFS.2015.2428211
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a practical key generation algorithm based on the reciprocity of wireless fading channels. A broadband chaotic signal is employed for transmission so that the fading is frequency selective. In this case, signal components in the frequency domain spaced greater than the coherence bandwidth of the channel can be considered uncorrelated. The proposed algorithm exploits this property to generate a unique shared key between two parties. The nonperiodicity of the chaotic signal provides a unique signal for key generation, which can be used even with static fading channels. The proposed approach is robust to timing differences between the parties because the frequency spectrum of the signals is employed. A technique for information reconciliation is presented which does not reveal any information about the values used to generate the key. The randomness of the key is confirmed, and the effects of additive white Gaussian noise and timing differences on the performance of the algorithm are examined.
引用
收藏
页码:1764 / 1775
页数:12
相关论文
共 37 条
[1]   COMMON RANDOMNESS IN INFORMATION-THEORY AND CRYPTOGRAPHY .1. SECRET SHARING [J].
AHLSWEDE, R ;
CSISZAR, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) :1121-1132
[2]   Correlation analysis of dynamical chaos [J].
Anishchenko, VS ;
Vadivasova, TE ;
Okrokvertskhov, GA ;
Strelkova, GI .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (1-2) :199-212
[3]  
[Anonymous], 2005, WIRELESS COMMUNICATI
[4]  
[Anonymous], 2009, P IEEE ICC
[5]  
[Anonymous], 1965, Ergodic theory and information
[6]   Wireless secret key generation exploiting reactance-domain scalar response of multipath fading channels [J].
Aono, T ;
Higuchi, K ;
Ohira, T ;
Komiyama, B ;
Sasaoka, H .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (11) :3776-3784
[7]   Robust Key Generation from Signal Envelopes in Wireless Networks [J].
Azimi-Sadjadi, Babak ;
Kiayias, Aggelos ;
Mercado, Alejandra ;
Yener, Bulent .
CCS'07: PROCEEDINGS OF THE 14TH ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2007, :401-+
[8]   PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION [J].
BENNETT, CH ;
BRASSARD, G ;
ROBERT, JM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (02) :210-229
[9]  
Brassard G., 1993, WORKSHOP THEORY APPL, P410, DOI 10.1007/3-540-48285-7_35
[10]   Fast, efficient error reconciliation for quantum cryptography [J].
Buttler, WT ;
Lamoreaux, SK ;
Torgerson, JR ;
Nickel, GH ;
Donahue, CH ;
Peterson, CG .
PHYSICAL REVIEW A, 2003, 67 (05) :8