The homology of configuration spaces of trees with loops

被引:14
作者
Chettih, Safia [1 ]
Luetgehetmann, Daniel
机构
[1] Reed Coll, Dept Math, Portland, OR 97202 USA
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2018年 / 18卷 / 04期
关键词
2; PARTICLES; TOPOLOGY; GRAPH;
D O I
10.2140/agt.2018.18.2443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the homology of ordered configuration spaces of finite trees with loops is torsion-free. We introduce configuration spaces with sinks, which allow for taking quotients of the base space. Furthermore, we give a concrete generating set for all homology groups of configuration spaces of trees with loops and the first homology group of configuration spaces of general finite graphs. An important technique in the paper is the identification of the E-1-page and differentials of Mayer-Vietoris spectral sequences for configuration spaces.
引用
收藏
页码:2443 / 2469
页数:27
相关论文
共 14 条
[1]   Finding topology in a factory: Configuration spaces [J].
Abrams, A ;
Ghrist, R .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (02) :140-150
[2]  
Abrams A, 2000, THESIS
[3]   Topology of configuration space of two particles on a graph, I [J].
Barnett, Kathryn ;
Farber, Michael .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (01) :593-624
[4]  
Bridson MR, 1999, GRUNDL MATH WISSEN, V319
[5]  
Chettih S, 2016, THESIS
[6]  
Crisp John, 2004, Algebr. Geom. Topol., V4, P439, DOI [10.2140/agt.2004.4.439, DOI 10.2140/AGT.2004.4.439]
[7]   Topology of configuration space of two particles on a graph, II [J].
Farber, Michael ;
Hanbury, Elizabeth .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (04) :2203-2227
[8]   Discrete Morse theory and graph braid groups [J].
Farley, Daniel ;
Sabalka, Lucas .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2005, 5 :1075-1109
[9]  
GHRIST R, 2001, AMS IP STUD ADV MATH, V24, P29, DOI DOI 10.1090/amsip/024/03
[10]  
Lutgehetmann D, 2014, THESIS