Consistency Condition and ML-EM Checkerboard Artifacts

被引:0
|
作者
You, Jiangsheng [1 ,2 ]
Wang, Jing [2 ,3 ]
Liang, Zhengrong [2 ,4 ]
机构
[1] Cubic Imaging LLC, 264 Grove St, Auburndale, MA 02466 USA
[2] SUNY Stony Brook, Dept Radiol, Stony Brook, NY 11794 USA
[3] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[4] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The expectation maximization (EM) algorithm for the maximum likelihood (ML) image reconstruction criterion generates severe checkerboard artifacts in the presence of noise. A classical remedy is to impose an a priori constraint for a penalized ML or maximum a posteriori probability solution. The penalty reduces the checkerboard artifacts and also introduces uncertainty because a priori information is usually unknown in clinic. Recent theoretical investigation reveals that the noise can be divided into two components. One is called null-space noise which annihilates during filtered backprojection (FBP)-type analytical image reconstruction. The other is called range-space noise which propagates into the FBP-type analytically reconstructed image. In particular, the null-space noise can be numerically estimated. The aim of this work is to investigate the relation between the null-space noise and the checkerboard artifacts in the ML-EM image reconstruction from noise projection data. It is expected that removing the null-space noise from the projection data could improve the signal-to-noise ratio of the data and, therefore, reduce the checkerboard artifacts in the ML-EM reconstructed images. The expectation was realized by computer simulation studies with application to single photon emission computed tomography, where the noise has been a major factor for image degradation. The reduction of the ML-EM checkerboard artifacts by removing the null-space noise avoids the uncertainty of using a priori penalty.
引用
收藏
页码:2245 / 2250
页数:6
相关论文
共 50 条
  • [1] Range condition and ML-EM checkerboard artifacts
    You, Jiangsheng
    Wang, Jing
    Liang, Zhengrong
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2007, 54 (05) : 1696 - 1702
  • [2] Superiorization of the ML-EM Algorithm
    Garduno, Edgar
    Herman, Gabor T.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2014, 61 (01) : 162 - 172
  • [3] The ML-EM Algorithm is Not Optimal for Poisson Noise
    Zeng, Gengsheng L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (05) : 2096 - 2101
  • [4] The ML-EM Algorithm Is Not Optimal For Poisson Noise
    Zeng, Gengsheng L.
    2015 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2015,
  • [5] Application and performance of an ML-EM algorithm in NEXT
    Simon, A.
    Lerche, C.
    Monrabal, F.
    Gomez-Cadenas, J. J.
    Alvarez, V.
    Azevedo, C. D. R.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Botas, A.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Conde, C. A. N.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Henriques, C. A. O.
    Hernandez, A. I.
    Hernando Morata, J. A.
    Herrero, V.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    Liubarsky, I.
    Lopez-March, N.
    Losada, M.
    Martin-Albo, J.
    Martinez-Lema, G.
    Martinez, A.
    McDonald, A. D.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Musti, M.
    Nebot-Guinot, M.
    Novella, P.
    Nygren, D. R.
    Palmeiro, B.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [6] Event reconstruction in NEXT using the ML-EM algorithm
    Simon, A.
    Ferrario, P.
    Izmaylov, A.
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2016, 273 : 2624 - 2626
  • [7] The ML-EM algorithm in continuum: sparse measure solutions
    Pouchol, Camille
    Verdier, Olivier
    INVERSE PROBLEMS, 2020, 36 (03)
  • [8] Analysis and Control of the Accuracy and Convergence of the ML-EM Iteration
    Magdics, Milan
    Szirmay-Kalos, Laszlo
    Toth, Balazs
    Penzov, Anton
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2013, 2014, 8353 : 170 - 177
  • [9] Noise in ML-EM reconstruction of SPECT images with attenuation correction
    Liew, SC
    Ng, YK
    Hasegawa, BH
    1995 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD, VOLS 1-3, 1996, : 1198 - 1202
  • [10] The role of the updating coefficient of the ML-EM algorithm in PET image reconstruction
    Gaitanis, A.
    Kontaxakis, G.
    Panayiotakis, G.
    Spyrou, G.
    Tzanakos, G.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 : S314 - S314