Fractional Ginzburg-Landau equation for fractal media

被引:166
作者
Tarasov, VE [1 ]
Zaslavsky, GM
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
fractional equation; fractional derivatives and integrals fractal medium; Ginzburg-Landau equation;
D O I
10.1016/j.physa.2005.02.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the fractional generalization of the Ginzburg-Landau equation from the variational Euler-Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg-Landau equation for fractal media are considered and different forms of the fractional Ginzburg-Landau equation or nonlinear Schrodinger equation with fractional derivatives are presented. The Agrawal variational principle and its generalization have been applied. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [41] On the stable hole solutions in the complex Ginzburg-Landau equation
    Descalzi, O
    Düring, G
    Tirapegui, E
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) : 66 - 71
  • [42] On the classification of entire local minimizers of the Ginzburg-Landau equation
    Farina, Alberto
    [J]. RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 231 - 236
  • [43] Bifurcation analysis and optical soliton solutions for the fractional complex Ginzburg-Landau equation in communication systems
    Tang, Lu
    [J]. OPTIK, 2023, 276
  • [44] A POWERFUL ITERATIVE APPROACH FOR QUINTIC COMPLEX GINZBURG-LANDAU EQUATION WITHIN THE FRAME OF FRACTIONAL OPERATOR
    Yao, Shao-Wen
    Ilhan, Esin
    Veeresha, P.
    Baskonus, Haci Mehmet
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (05)
  • [45] A fourth-order linearized difference scheme for the coupled space fractional Ginzburg-Landau equation
    Xu, Yuan
    Zeng, Jiali
    Hu, Shuanggui
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [46] A Dissipative Linearly-Implicit Scheme for the Ginzburg-Landau Equation
    Matsuo, T.
    Torii, E.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 888 - 891
  • [47] Radial solutions for the Ginzburg-Landau equation with applied magnetic field
    Sauvageot, M
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (7-8) : 785 - 826
  • [48] Elliptic function formalism description of anisotropic Ginzburg-Landau equation
    Buzea, C
    Yamashita, T
    [J]. PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1998, 298 (1-2): : 133 - 139
  • [49] Internal Model Controller Design of Linearized Ginzburg-Landau Equation
    Xie, Junyao
    Koch, Charles Robert
    Dubljevic, Stevan
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 7728 - 7733
  • [50] Stochastic time-optimal control for time-fractional Ginzburg-Landau equation with mixed fractional Brownian motion
    Durga, N.
    Muthukumar, P.
    Fu, Xianlong
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (06) : 1144 - 1165